headshot of Kevin Bell

Kevin Bell

Assistant Professor
Bioengineering Department

overview

Dr. Bell is an Assistant Professor in the Department of Bioengineering with a Secondary Appointment in the Clinical and Translational Science Institute. Dr. Bell is a member of the Human Movement and Balance Laboratory and his research interests focus on development and application of portable human movement sensors towards the assessment of joint function throughout the musculoskeletal system. Specifically, clinical and laboratory-based experimentation focuses on assessing the effects of joint injury, repair and rehabilitation to promote more effective clinical treatments and improved clinical outcomes. Novel experimental techniques including virtual reality assisted motion tracking and wireless joint function assessment are utilized to answer clinically relevant research questions. Recent projects have focused on development and validation of a wearable remote rehabilitation system and biomechanical phenotyping of low back pain as a part of the NIH HEAL Initiative's Back Pain Consortium (BACPAC).

about

(2018) Innovative Institute - Pitt Innovator Award.

(2018) Pittsburgh Innovation Challenge - Poster Award.

(2017) German Knee Society (DKG) - Best Poster Award.

(2016) Orthopaedic Research Society (ORS) - New Investigator Research Award.

BS, Mathematics, Westminster College, 1997 - 2002

BS, Bioengineering, University of Pittsburgh, 2000 - 2002

MS, Mechanical Engineering, University of Pittsburgh, 2004 - 2006

PhD, Bioengineering, University of Pittsburgh, 2008 - 2013

Bailes, A.H., Johnson, M., Roos, R., Clark, W., Cook, H., McKernan, G., Sowa, G.A., Cham, R., & Bell, K.M. (2024). Assessing the Reliability and Validity of Inertial Measurement Units to Measure Three-Dimensional Spine and Hip Kinematics During Clinical Movement Tasks. Sensors (Basel), 24(20), 6580.MDPI. doi: 10.3390/s24206580.

Hoydick, J.F., Johnson, M.E., Cook, H.A., Alfikri, Z.F., Jakicic, J.M., Piva, S.R., Chambers, A.J., & Bell, K.M. (2024). Algorithm Validation for Quantifying ActiGraph™ Physical Activity Metrics in Individuals with Chronic Low Back Pain and Healthy Controls. Sensors (Basel), 24(16), 5323.MDPI. doi: 10.3390/s24165323.

Quirk, D.A., Johnson, M.E., Anderson, D.E., Smuck, M., Sun, R., Matthew, R., Bailey, J., Marras, W.S., Bell, K.M., Darwin, J., & Bowden, A.E. (2023). Biomechanical Phenotyping of Chronic Low Back Pain: Protocol for BACPAC. Pain Med, 24(Suppl 1), S48-S60.Oxford University Press (OUP). doi: 10.1093/pm/pnac163.

Riffitts, M., Oh, A., Alemu, A., Patel, V., Smith, C.N., Murati, S., Bailes, A., Allen, M., Dombrowski, M., Lee, J.Y., Donaldson, W.F., Clark, W.W., & Bell, K. (2023). Functional range of motion of the cervical spine in cervical fusion patients during activities of daily living. J Biomech, 152, 111528.Elsevier. doi: 10.1016/j.jbiomech.2023.111528.

Vo, N.V., Piva, S.R., Patterson, C.G., McKernan, G.P., Zhou, L., Bell, K.M., Anderst, W., Greco, C.M., Schneider, M.J., Delitto, A., Dicianno, B.E., Darwin, J., & Sowa, G.A. (2023). Toward the Identification of Distinct Phenotypes: Research Protocol for the Low Back Pain Biological, Biomechanical, and Behavioral (LB3P) Cohort Study and the BACPAC Mechanistic Research Center at the University of Pittsburgh. Pain Med, 24(Suppl 1), S36-S47.Oxford University Press (OUP). doi: 10.1093/pm/pnad009.

Riffitts, M., Cook, H., McClincy, M., & Bell, K. (2022). Evaluation of a Smart Knee Brace for Range of Motion and Velocity Monitoring during Rehabilitation Exercises and an Exergame. Sensors (Basel), 22(24), 9965.MDPI. doi: 10.3390/s22249965.

Wawrose, R.A., Couch, B.K., Dombrowski, M., Chen, S.R., Oyekan, A., Dong, Q., Wang, D., Zhou, C., Chen, J., Modali, K., Johnson, M., Sedor-Schiffhauer, Z., Hitchens, T.K., Jin, T., Bell, K.M., Lee, J.Y., Sowa, G.A., & Vo, N.V. (2022). Percutaneous lumbar annular puncture: A rat model to study intervertebral disc degeneration and pain-related behavior. JOR Spine, 5(2), e1202.Wiley. doi: 10.1002/jsp2.1202.

Magaña, L.C., Murati, S., Riffitts, M., Harrison, C., Harris, A., Sowa, G., Johnson, J.T., Bell, K., & Nilsen, M. (2021). Subjective and Objective Measures in Assessing Neck Disability and Pain in Head and Neck Cancer. Laryngoscope, 131(9), 2015-2022.Wiley. doi: 10.1002/lary.29488.

McClincy, M., Seabol, L.G., Riffitts, M., Ruh, E., Novak, N.E., Wasilko, R., Hamm, M.E., & Bell, K.M. (2021). Perspectives on the Gamification of an Interactive Health Technology for Postoperative Rehabilitation of Pediatric Anterior Cruciate Ligament Reconstruction: User-Centered Design Approach. JMIR Serious Games, 9(3), e27195.JMIR Publications. doi: 10.2196/27195.

McClincy, M., Seabol, L.G., Riffitts, M., Ruh, E., Novak, N.E., Wasilko, R., Hamm, M.E., & Bell, K.M. (2021). Perspectives on the Gamification of an Interactive Health Technology for Postoperative Rehabilitation of Pediatric Anterior Cruciate Ligament Reconstruction: User-Centered Design Approach (Preprint). JMIR Publications. doi: 10.2196/preprints.27195.

Wawrose, R.A., Howington, F.E., LeVasseur, C.M., Smith, C.N., Couch, B.K., Shaw, J.D., Donaldson, W.F., Lee, J.Y., Patterson, C.G., Anderst, W.J., & Bell, K.M. (2021). Assessing the biofidelity of in vitro biomechanical testing of the human cervical spine. J Orthop Res, 39(6), 1217-1226.Wiley. doi: 10.1002/jor.24702.

Bechard, L., Bell, K., & Lynch, A. (2020). Preliminary validation of a mobile force Sensing device for clinical and telerehabilitation. J Biomech, 110, 109973.Elsevier. doi: 10.1016/j.jbiomech.2020.109973.

Bell, K.M., Onyeukwu, C., Smith, C.N., Oh, A., Devito Dabbs, A., Piva, S.R., Popchak, A.J., Lynch, A.D., Irrgang, J.J., & McClincy, M.P. (2020). A Portable System for Remote Rehabilitation Following a Total Knee Replacement: A Pilot Randomized Controlled Clinical Study. Sensors (Basel), 20(21), 6118.MDPI. doi: 10.3390/s20216118.

Tisherman, R., Hartman, R., Hariharan, K., Vaudreuil, N., Sowa, G., Schneider, M., Timko, M., & Bell, K. (2020). Biomechanical contribution of the alar ligaments to upper cervical stability. J Biomech, 99, 109508.Elsevier. doi: 10.1016/j.jbiomech.2019.109508.

Bell, K.M., Debski, R.E., Sowa, G.A., Kang, J.D., & Tashman, S. (2019). Optimization of compressive loading parameters to mimic in vivo cervical spine kinematics in vitro. J Biomech, 87, 107-113.Elsevier. doi: 10.1016/j.jbiomech.2019.02.022.

Bell, K.M., Onyeukwu, C., McClincy, M.P., Allen, M., Bechard, L., Mukherjee, A., Hartman, R.A., Smith, C., Lynch, A.D., & Irrgang, J.J. (2019). Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee. Sensors (Basel), 19(5), 1021.MDPI. doi: 10.3390/s19051021.

Guenther, D., Sexton, S.L., Bell, K.M., Irarrázaval, S., Fu, F.H., Musahl, V., & Debski, R.E. (2019). Non-uniform strain distribution in anterolateral capsule of knee: Implications for surgical repair. J Orthop Res, 37(5), 1025-1032.Wiley. doi: 10.1002/jor.24270.

Ouyang, Z., Wang, W., Vaudreuil, N., Tisherman, R., Yan, Y., Bosch, P., Kang, J., & Bell, K. (2019). Biomechanical Analysis of a Growing Rod with Sliding Pedicle Screw System for Early-Onset Scoliosis. J Healthc Eng, 2019(1), 9535070.Hindawi. doi: 10.1155/2019/9535070.

Rynearson, B., Ramanathan, R., Allen, M., Wang, X., Vaudreuil, N., Bell, K.M., & Bosch, P. (2019). Biomechanical Analysis of Wide Posterior Releases Compared With Inferior Facetectomy and Discectomy in the Thoracolumbar and Lumbar Spine. Spine Deform, 7(3), 404-409.Springer Nature. doi: 10.1016/j.jspd.2018.09.004.

Rynearson, B., Ramanathan, R., Allen, M., Wang, X., Vaudreuil, N., Bell, K.M., & Bosch, P. (2019). Biomechanical Analysis of Wide Posterior Releases Compared With Inferior Facetectomy and Discectomy in the Thoracolumbar and Lumbar Spine. Spine Deform, 7(3), 404-409. doi: 10.1016/j.jspd.2018.09.004.

Tisherman, R., Vaudreuil, N., Ramanathan, R., Hartman, R., Lee, J., & Bell, K. (2019). Biomechanical contributions of upper cervical ligamentous structures in Type II odontoid fractures. J Biomech, 83, 28-33.Elsevier. doi: 10.1016/j.jbiomech.2018.11.014.

Vaudreuil, N., Xue, J., Bell, K., & Dede, O. (2019). Biomechanical analysis of pedicle screw density in posterior spine instrumentation. CURRENT ORTHOPAEDIC PRACTICE, 30(4), 312-317.Wolters Kluwer. doi: 10.1097/BCO.0000000000000778.

Bell, K.M., Oh, A., Cook, H.A., Yan, Y., & Lee, J.Y. (2018). Adaptation of a clinical fixation device for biomechanical testing of the lumbar spine. J Biomech, 69, 164-168.Elsevier. doi: 10.1016/j.jbiomech.2017.12.029.

Bell, K.M., Rahnemai-Azar, A.A., Irarrazaval, S., Guenther, D., Fu, F.H., Musahl, V., & Debski, R.E. (2018). In situ force in the anterior cruciate ligament, the lateral collateral ligament, and the anterolateral capsule complex during a simulated pivot shift test. J Orthop Res, 36(3), 847-853.Wiley. doi: 10.1002/jor.23676.

Bell, K.M., Yan, Y., Hartman, R.A., & Lee, J.Y. (2018). Influence of follower load application on moment-rotation parameters and intradiscal pressure in the cervical spine. J Biomech, 76, 167-172.Elsevier. doi: 10.1016/j.jbiomech.2018.05.031.

Vaudreuil, N., Xue, J., Ramanathan, R., Tisherman, R., Dombrowski, M., Wang, W.J., & Bell, K. (2018). Novel use of telescoping growth rods in treatment of early onset scoliosis: An in vivo and in vitro study in a porcine model. JOR Spine, 1(4), e1035.Wiley. doi: 10.1002/jsp2.1035.

Guenther, D., Irarrázaval, S., Bell, K.M., Rahnemai-Azar, A.A., Fu, F.H., Debski, R.E., & Musahl, V. (2017). The Role of Extra-Articular Tenodesis in Combined ACL and Anterolateral Capsular Injury. J Bone Joint Surg Am, 99(19), 1654-1660.Wolters Kluwer. doi: 10.2106/JBJS.16.01462.

Guenther, D., Rahnemai-Azar, A.A., Bell, K.M., Irarrázaval, S., Fu, F.H., Musahl, V., & Debski, R.E. (2017). The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue. Am J Sports Med, 45(4), 849-855.SAGE Publications. doi: 10.1177/0363546516674477.

Rahnemai-Azar, A.A., Arilla, F.V., Bell, K.M., Fu, F.H., Musahl, V., & Debski, R.E. (2017). Biomechanical evaluation of knee endpoint during anterior tibial loading: Implication for physical exams. Knee, 24(2), 258-263.Elsevier. doi: 10.1016/j.knee.2016.11.015.

Russo, F., Hartman, R.A., Bell, K.M., Vo, N., Sowa, G.A., Kang, J.D., Vadalà, G., & Denaro, V. (2017). Biomechanical Evaluation of Transpedicular Nucleotomy With Intact Annulus Fibrosus. Spine (Phila Pa 1976), 42(4), E193-E201.Wolters Kluwer. doi: 10.1097/BRS.0000000000001762.

Yan, Y., Bell, K.M., Hartman, R.A., Hu, J., Wang, W., Kang, J.D., & Lee, J.Y. (2017). In vitro evaluation of translating and rotating plates using a robot testing system under follower load. Eur Spine J, 26(1), 189-199.Springer Nature. doi: 10.1007/s00586-015-4203-8.

Arilla, F.V., Yeung, M., Bell, K., Rahnemai-Azar, A.A., Rothrauff, B.B., Fu, F.H., Debski, R.E., Ayeni, O.R., & Musahl, V. (2016). Authors' Reply. Arthroscopy, 32(5), 730-731.Elsevier. doi: 10.1016/j.arthro.2016.02.015.

Bell, K.M., Yan, Y., Debski, R.E., Sowa, G.A., Kang, J.D., & Tashman, S. (2016). Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine. J Biomech, 49(2), 167-172.Elsevier. doi: 10.1016/j.jbiomech.2015.11.045.

Hartman, R.A., Tisherman, R.E., Wang, C., Bell, K.M., Lee, J.Y., Sowa, G.A., & Kang, J.D. (2016). Mechanical role of the posterior column components in the cervical spine. Eur Spine J, 25(7), 2129-2138.Springer Nature. doi: 10.1007/s00586-016-4541-1.

Russo, F., Hartman, R.A., Bell, K.M., Vo, N., Sowa, G.A., Kang, J.D., Vadalà, G., & Denaro, V. (2016). Biomechanical Evaluation of Transpedicular Nucleotomy with Intact Annulus Fibrosus. Spine (Phila Pa 1976). doi: 10.1097/BRS.0000000000001762.

Arilla, F.V., Yeung, M., Bell, K., Rahnemai-Azar, A.A., Rothrauff, B.B., Fu, F.H., Debski, R.E., Ayeni, O.R., & Musahl, V. (2015). Experimental Execution of the Simulated Pivot-Shift Test: A Systematic Review of Techniques. Arthroscopy, 31(12), 2445-54.e2.Elsevier. doi: 10.1016/j.arthro.2015.06.027.

Bell, K.M., Arilla, F.V., Rahnemai-Azar, A.A., Fu, F.H., Musahl, V., & Debski, R.E. (2015). Novel technique for evaluation of knee function continuously through the range of flexion. J Biomech, 48(13), 3728-3731.Elsevier. doi: 10.1016/j.jbiomech.2015.08.019.

Hartman, R.A., Bell, K.M., Quan, B., Nuzhao, Y., Sowa, G.A., & Kang, J.D. (2015). Needle puncture in rabbit functional spinal units alters rotational biomechanics. J Spinal Disord Tech, 28(3), E146-E153.Wolters Kluwer. doi: 10.1097/BSD.0000000000000196.

Wang, C., Bell, K., McClincy, M., Jacobs, L., Dede, O., Roach, J., & Bosch, P. (2015). Biomechanical comparison of ponte osteotomy and discectomy. Spine (Phila Pa 1976), 40(3), E141-E145.Wolters Kluwer. doi: 10.1097/BRS.0000000000000697.

Bell, K.M., Hartman, R.A., Gilbertson, L.G., & Kang, J.D. (2013). In vitro spine testing using a robot-based testing system: comparison of displacement control and "hybrid control". J Biomech, 46(10), 1663-1669.Elsevier. doi: 10.1016/j.jbiomech.2013.04.007.

Leckie, S.K., Sowa, G.A., Bechara, B.P., Hartman, R.A., Coelho, J.P., Witt, W.T., Dong, Q.D., Bowman, B.W., Bell, K.M., Vo, N.V., Kramer, B.C., & Kang, J.D. (2013). Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. Spine J, 13(3), 263-272.Elsevier. doi: 10.1016/j.spinee.2012.12.004.

Smolinski, P., O'Farrell, M., Bell, K., Gilbertson, L., & Fu, F.H. (2013). Effect of ACL reconstruction tunnels on stress in the distal femur. Knee Surg Sports Traumatol Arthrosc, 21(4), 839-845.Wiley. doi: 10.1007/s00167-012-2003-9.

Bechara, B.P., Bell, K.M., Hartman, R.A., Lee, J.Y., Kang, J.D., & Donaldson, W.F. (2012). In vivo analysis of cervical range of motion after 4- and 5-level subaxial cervical spine fusion. Spine (Phila Pa 1976), 37(1), E23-E29.Wolters Kluwer. doi: 10.1097/BRS.0b013e31821c3275.

Hartman, R.A., Bell, K.M., Debski, R.E., Kang, J.D., & Sowa, G.A. (2012). Novel ex-vivo mechanobiological intervertebral disc culture system. J Biomech, 45(2), 382-385.Elsevier. doi: 10.1016/j.jbiomech.2011.10.036.

Leckie, S.K., Bechara, B.P., Hartman, R.A., Sowa, G.A., Woods, B.I., Coelho, J.P., Witt, W.T., Dong, Q.D., Bowman, B.W., Bell, K.M., Vo, N.V., Wang, B., & Kang, J.D. (2012). Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an in vivo rabbit model. Spine J, 12(1), 7-20.Elsevier. doi: 10.1016/j.spinee.2011.09.011.

Bell, K.M., Bechara, B.P., Hartman, R.A., Shively, C., Frazier, E.C., Lee, J.Y., Kang, J.D., & Donaldson, W.F. (2011). Influence of number of operated levels and postoperative time on active range of motion following anterior cervical decompression and fusion procedures. Spine (Phila Pa 1976), 36(4), 263-268.Wolters Kluwer. doi: 10.1097/BRS.0b013e3181ccc552.

Sowa, G.A., Coelho, J.P., Bell, K.M., Zorn, A.S., Vo, N.V., Smolinski, P., Niyonkuru, C., Hartman, R., Studer, R.K., & Kang, J.D. (2011). Alterations in gene expression in response to compression of nucleus pulposus cells. Spine J, 11(1), 36-43.Elsevier. doi: 10.1016/j.spinee.2010.09.019.

Agosti, C.D., Bell, K.M., Plazek, D.J., Larson, J., Kang, J.D., Gilbertson, L.G., & Smolinski, P. (2010). Analysis of power law models for the creep of nucleus pulposus tissue. Biorheology, 47(2), 143-151.SAGE Publications. doi: 10.3233/BIR-2010-0564.

Bell, K.M., Frazier, E.C., Shively, C.M., Hartman, R.A., Ulibarri, J.C., Lee, J.Y., Kang, J.D., & Donaldson, W.F. (2009). Assessing range of motion to evaluate the adverse effects of ill-fitting cervical orthoses. Spine J, 9(3), 225-231.Elsevier. doi: 10.1016/j.spinee.2008.03.010.

Tsai, A.G., Musahl, V., Steckel, H., Bell, K.M., Zantop, T., Irrgang, J.J., & Fu, F.H. (2008). Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord, 9(1), 35.Springer Nature. doi: 10.1186/1471-2474-9-35.

Zantop, T., Ferretti, M., Bell, K.M., Brucker, P.U., Gilbertson, L., & Fu, F.H. (2008). Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees: intra-articular study in a goat model. Am J Sports Med, 36(11), 2158-2166.SAGE Publications. doi: 10.1177/0363546508320572.

Musahl, V., Bell, K.M., Tsai, A.G., Costic, R.S., Allaire, R., Zantop, T., Irrgang, J.J., & Fu, F.H. (2007). Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc, 15(8), 1009-1012.Wiley. doi: 10.1007/s00167-007-0317-9.