Postdoctoral in Bioengineering, University of Pittsburgh, 2011 - 2013
PhD, Biomedical Engineering, University of Michigan, 2005 - 2011
MS, Biomedical Engineering, University of Michigan, 2005 - 2007
BA, Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 2001 - 2005
BA, Biochemistry, University of Colorado, Boulder, 2001 - 2005
Chen, K., Forrest, A.M., Burgos, G.G., & Kozai, T.D.Y. (2024). Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng, 21(3), 036033.IOP Publishing. doi: 10.1088/1741-2552/ad5049.
Chen, K., Wu, B., Krahe, D., Vazquez, A., Siegenthaler, J.R., Rechenberg, R., Li, W., Cui, X.T., & Kozai, T.D.Y. (2024). Potential of Photoelectric Stimulation with Ultrasmall Carbon Electrode on Neural Tissue: New Directions in Neuromodulation Technology Development. 2024.02.17.580823.Cold Spring Harbor Laboratory. doi: 10.1101/2024.02.17.580823.
Chen, K., Wu, B., Krahe, D., Vazquez, A., Siegenthaler, J.R., Rechenberg, R., Li, W., Cui, X.T., & Kozai, T.D.Y. (2024). Potential of Photoelectric Stimulation with Ultrasmall Carbon Electrode on Neural Tissue: New Directions in Neurostimulation Technology Development. ADVANCED FUNCTIONAL MATERIALS, 34(41).Wiley. doi: 10.1002/adfm.202403164.
Hughes, C.L., Stieger, K.A., Chen, K., Vazquez, A.L., & Kozai, T.D. (2024). Spatiotemporal properties of cortical excitatory and inhibitory neuron activation by sustained and bursting electrical microstimulation. In bioRxiv. doi: 10.1101/2024.09.30.615029.
Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padilla, C.G., Gheres, K.W., Broussard, J.I., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2024). Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun, 15(1), 5512.Springer Nature. doi: 10.1038/s41467-024-49709-9.
Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padilla, C.G., Gheres, K.W., Broussard, J.I., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2024). Author Correction: Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun, 15(1), 7618.Springer Nature. doi: 10.1038/s41467-024-52088-w.
McNamara, I.N., Wellman, S.M., Li, L., Eles, J.R., Savya, S., Sohal, H.S., Angle, M.R., & Kozai, T.D.Y. (2024). Electrode sharpness and insertion speed reduce tissue damage near high-density penetrating arrays. J Neural Eng, 21(2), 026030.IOP Publishing. doi: 10.1088/1741-2552/ad36e1.
Suematsu, N., Vazquez, A.L., & Kozai, T.D. (2024). Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. bioRxiv, 5(01-22), 2024.01.01.573814.Cold Spring Harbor Laboratory. doi: 10.1101/2024.01.01.573814.
Suematsu, N., Vazquez, A.L., & Kozai, T.D.Y. (2024). Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. J Neural Eng, 21(2), 026033.IOP Publishing. doi: 10.1088/1741-2552/ad3853.
Wellman, S., Forrest, A.M., Douglas, M.M., Subbaraman, A., Zhang, G., & Kozai, T.D.Y. (2024). Dynamic changes in structure and function of brain mural cells around chronically implanted microelectrodes. bioRxiv, 5(06-24), 2024.06.11.598494.Cold Spring Harbor Laboratory. doi: 10.1101/2024.06.11.598494.
Wellman, S.M., Forrest, A.M., Douglas, M.M., Subbaraman, A., Zhang, G., & Kozai, T.D.Y. (2024). Dynamic changes in the structure and function of brain mural cells around chronically implanted microelectrodes. Biomaterials, 315, 122963.Elsevier. doi: 10.1016/j.biomaterials.2024.122963.
Chen, K., Cambi, F., & Kozai, T.D.Y. (2023). Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. bioRxiv, 4(02-10), 2023.01.31.526463.Cold Spring Harbor Laboratory. doi: 10.1101/2023.01.31.526463.
Chen, K., Cambi, F., & Kozai, T.D.Y. (2023). Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials, 301, 122210.Elsevier. doi: 10.1016/j.biomaterials.2023.122210.
Chen, K., Forrest, A., Gonzalez Burgos, G., & Kozai, T.D.Y. (2023). Neuronal functional connectivity is impaired in a layer dependent manner near the chronically implanted microelectrodes. bioRxiv, 4(11-20), 2023.11.06.565852.Cold Spring Harbor Laboratory. doi: 10.1101/2023.11.06.565852.
Chen, K., Garcia Padilla, C., Kiselyov, K., & Kozai, T.D.Y. (2023). Cell-specific alterations in autophagy-lysosomal activity near the chronically implanted microelectrodes. Biomaterials, 302, 122316.Elsevier. doi: 10.1016/j.biomaterials.2023.122316.
Chen, K., Padilla, C.G., Kiselyov, K., & Kozai, T. (2023). Impairment of autophagy-lysosomal activity near the chronically implanted microelectrodes. 2023.05.31.543108.Cold Spring Harbor Laboratory. doi: 10.1101/2023.05.31.543108.
Hughes, C., & Kozai, T. (2023). Dynamic amplitude modulation of microstimulation evokes biomimetic onset and offset transients and reduces depression of evoked calcium responses in sensory cortices. Brain Stimul, 16(3), 939-965.Elsevier. doi: 10.1016/j.brs.2023.05.013.
Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padill, C.G., Gheres, K.W., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2023). Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. bioRxiv, 4(12-15), 2023.12.05.570162.Cold Spring Harbor Laboratory. doi: 10.1101/2023.12.05.570162.
McNamara, I.N., Wellman, S.M., Li, L., Eles, J.R., Savya, S., Sohal, H.S., Angle, M.R., & Kozai, T.D.Y. (2023). Electrode sharpness and insertion speed reduce tissue damage near high-density penetrating arrays. 2023.11.22.568119.Cold Spring Harbor Laboratory. doi: 10.1101/2023.11.22.568119.
Wellman, S.M., Coyne, O.A., Douglas, M.M., & Kozai, T.D.Y. (2023). Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease. bioRxiv, 4(02-16), 2023.02.11.528131.Cold Spring Harbor Laboratory. doi: 10.1101/2023.02.11.528131.
Wellman, S.M., Coyne, O.A., Douglas, M.M., & Kozai, T.D.Y. (2023). Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease. J Neural Eng, 20(4), 046044.IOP Publishing. doi: 10.1088/1741-2552/aceca5.
Hughes, C., & Kozai, T. (2022). Biomimetic microstimulation of sensory cortices. 2022.11.11.516221.Cold Spring Harbor Laboratory. doi: 10.1101/2022.11.11.516221.
Savya, S.P., Li, F., Lam, S., Wellman, S.M., Stieger, K.C., Chen, K., Eles, J.R., & Kozai, T.D.Y. (2022). In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. 2022.07.01.498483.Cold Spring Harbor Laboratory. doi: 10.1101/2022.07.01.498483.
Savya, S.P., Li, F., Lam, S., Wellman, S.M., Stieger, K.C., Chen, K., Eles, J.R., & Kozai, T.D.Y. (2022). In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials, 289, 121784.Elsevier. doi: 10.1016/j.biomaterials.2022.121784.
Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2022). Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. 2022.01.14.476351.Cold Spring Harbor Laboratory. doi: 10.1101/2022.01.14.476351.
Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2022). Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. J Neural Eng, 19(2), 026024.IOP Publishing. doi: 10.1088/1741-2552/ac5bf5.
Chen, K., Stieger, K.C., & Kozai, T.D. (2021). Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Curr Opin Biotechnol, 72, 112-120.Elsevier. doi: 10.1016/j.copbio.2021.10.008.
Chen, K., Wellman, S.M., Yaxiaer, Y., Eles, J.R., & Kozai, T.D. (2021). In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. Biomaterials, 268, 120526.Elsevier. doi: 10.1016/j.biomaterials.2020.120526.
Dubaniewicz, M., Eles, J.R., Lam, S., Song, S., Cambi, F., Sun, D., Wellman, S.M., & Kozai, T.D.Y. (2021). Inhibition of Na+/H+exchanger modulates microglial activation and scar formation following microelectrode implantation. J Neural Eng, 18(4), 045001.IOP Publishing. doi: 10.1088/1741-2552/abe8f1.
Eles, J.R., Stieger, K.C., & Kozai, T.D.Y. (2021). The temporal pattern of intracortical microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons. J Neural Eng, 18(1), 015001.IOP Publishing. doi: 10.1088/1741-2552/abc29c.
Fitz, N.F., Nam, K.N., Wolfe, C.M., Letronne, F., Playso, B.E., Iordanova, B.E., Kozai, T.D.Y., Biedrzycki, R.J., Kagan, V.E., Tyurina, Y.Y., Han, X., Lefterov, I., & Koldamova, R. (2021). Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nat Commun, 12(1), 3416.Springer Nature. doi: 10.1038/s41467-021-23762-0.
Sahasrabuddhe, K., Khan, A.A., Singh, A.P., Stern, T.M., Ng, Y., Tadić, A., Orel, P., LaReau, C., Pouzzner, D., Nishimura, K., Boergens, K.M., Shivakumar, S., Hopper, M.S., Kerr, B., Hanna, M.E.S., Edgington, R.J., McNamara, I., Fell, D., Gao, P., Babaie-Fishani, A., Veijalainen, S., Klekachev, A.V., Stuckey, A.M., Luyssaert, B., Kozai, T.D.Y., Xie, C., Gilja, V., Dierickx, B., Kong, Y., Straka, M., Sohal, H.S., & Angle, M.R. (2021). The Argo: a high channel count recording system for neural recording in vivo. J Neural Eng, 18(1), 015002.IOP Publishing. doi: 10.1088/1741-2552/abd0ce.
Bettinger, C.J., Ecker, M., Kozai, T.D.Y., Malliaras, G.G., Meng, E., & Voit, W. (2020). Recent advances in neural interfaces-Materials chemistry to clinical translation. MRS Bull, 45(8), 655-668.Springer Nature. doi: 10.1557/mrs.2020.195.
Eles, J.R., & Kozai, T.D.Y. (2020). In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials, 234, 119767.Elsevier. doi: 10.1016/j.biomaterials.2020.119767.
Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2020). In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. J Neurosci Res, 98(10), 2072-2095.Wiley. doi: 10.1002/jnr.24676.
Trevathan, J.K., Asp, A.J., Nicolai, E.N., Trevathan, J., Kremer, N.A., Kozai, T.D.Y., Cheng, D., Schachter, M., Nassi, J.J., Otte, S.L., Parker, J.G., Lujan, J.L., & Ludwig, K. (2020). Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures. J Neural Eng, 18(2), 10.1088/1741-12552/abb7a4.IOP Publishing. doi: 10.1088/1741-2552/abb7a4.
Wellman, S.M., Guzman, K., Stieger, K.C., Brink, L.E., Sridhar, S., Dubaniewicz, M.T., Li, L., Cambi, F., & Kozai, T.D.Y. (2020). Cuprizone-induced oligodendrocyte loss and demyelination impairs recording performance of chronically implanted neural interfaces. Biomaterials, 239, 119842.Elsevier. doi: 10.1016/j.biomaterials.2020.119842.
Yang, Q., Wu, B., Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2020). Zwitterionic Polymer Coating Suppresses Microglial Encapsulation to Neural Implants In Vitro and In Vivo. Adv Biosyst, 4(6), e1900287.Wiley. doi: 10.1002/adbi.201900287.
Baranov, S.V., Baranova, O.V., Yablonska, S., Suofu, Y., Vazquez, A.L., Kozai, T.D.Y., Cui, X.T., Ferrando, L.M., Larkin, T.M., Tyurina, Y.Y., Kagan, V.E., Carlisle, D.L., Kristal, B.S., & Friedlander, R.M. (2019). Mitochondria modulate programmed neuritic retraction. Proc Natl Acad Sci U S A, 116(2), 650-659.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1811021116.
Chen, K., Lam, S., & Kozai, T.D. (2019). What directions of improvements in electrode designs should we expect in the next 5-10 years?. Bioelectron Med (Lond), 2(3), 119-122.Taylor & Francis. doi: 10.2217/bem-2019-0023.
Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2019). Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study. Biomaterials, 195, 111-123.Elsevier. doi: 10.1016/j.biomaterials.2018.12.031.
Ereifej, E.S., Shell, C.E., Schofield, J.S., Charkhkar, H., Cuberovic, I., Dorval, A.D., Graczyk, E.L., Kozai, T.D.Y., Otto, K.J., Tyler, D.J., Welle, C.G., Widge, A.S., Zariffa, J., Moritz, C.T., Bourbeau, D.J., & Marasco, P.D. (2019). Neural engineering: the process, applications, and its role in the future of medicine. J Neural Eng, 16(6), 063002.IOP Publishing. doi: 10.1088/1741-2552/ab4869.
Kozai, T.D.Y., & Purcell, E.K. (2019). Pipette-integrated microelectrodes. Nat Biomed Eng, 3(9), 682-683.Springer Nature. doi: 10.1038/s41551-019-0452-x.
Michelson, N.J., Eles, J.R., Vazquez, A.L., Ludwig, K.A., & Kozai, T.D.Y. (2019). Calcium activation of cortical neurons by continuous electrical stimulation: Frequency dependence, temporal fidelity, and activation density. J Neurosci Res, 97(5), 620-638.Wiley. doi: 10.1002/jnr.24370.
Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2019). In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. 2019.12.16.878892.Cold Spring Harbor Laboratory. doi: 10.1101/2019.12.16.878892.
Stocking, K.C., Vazquez, A.L., & Kozai, T.D.Y. (2019). Intracortical Neural Stimulation With Untethered, Ultrasmall Carbon Fiber Electrodes Mediated by the Photoelectric Effect. IEEE Trans Biomed Eng, 66(8), 2402-2412.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TBME.2018.2889832.
Wellman, S.M., Li, L., Yaxiaer, Y., McNamara, I., & Kozai, T.D.Y. (2019). Revealing Spatial and Temporal Patterns of Cell Death, Glial Proliferation, and Blood-Brain Barrier Dysfunction Around Implanted Intracortical Neural Interfaces. Front Neurosci, 13(MAY), 493.Frontiers. doi: 10.3389/fnins.2019.00493.
Cody, P.A., Eles, J.R., Lagenaur, C.F., Kozai, T.D.Y., & Cui, X.T. (2018). Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model. Biomaterials, 161, 117-128.Elsevier. doi: 10.1016/j.biomaterials.2018.01.025.
Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2018). In vivo imaging of neuronal calcium during electrode implantation: Spatial and temporal mapping of damage and recovery. Biomaterials, 174, 79-94.Elsevier. doi: 10.1016/j.biomaterials.2018.04.043.
Golabchi, A., Wu, B., Li, X., Carlisle, D.L., Kozai, T.D.Y., Friedlander, R.M., & Cui, X.T. (2018). Melatonin improves quality and longevity of chronic neural recording. Biomaterials, 180, 225-239.Elsevier. doi: 10.1016/j.biomaterials.2018.07.026.
Iordanova, B., Vazquez, A., Kozai, T.D., Fukuda, M., & Kim, S.G. (2018). Optogenetic investigation of the variable neurovascular coupling along the interhemispheric circuits. J Cereb Blood Flow Metab, 38(4), 627-640.SAGE Publications. doi: 10.1177/0271678X18755225.
Kozai, T.D.Y. (2018). The History and Horizons of Microscale Neural Interfaces. Micromachines (Basel), 9(9), 445.MDPI. doi: 10.3390/mi9090445.
Michelson, N.J., & Kozai, T.D.Y. (2018). Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1. J Neurophysiol, 120(5), 2232-2245.American Physiological Society. doi: 10.1152/jn.00299.2018.
Michelson, N.J., Eles, J.R., Vazquez, A.L., Ludwig, K.A., & Kozai, T.D. (2018). Calcium activation of cortical neurons by continuous electrical stimulation: Frequency-dependence, temporal fidelity and activation density. 338525.Cold Spring Harbor Laboratory. doi: 10.1101/338525.
Michelson, N.J., Vazquez, A.L., Eles, J.R., Salatino, J.W., Purcell, E.K., Williams, J.J., Cui, X.T., & Kozai, T.D.Y. (2018). Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface. J Neural Eng, 15(3), 033001.IOP Publishing. doi: 10.1088/1741-2552/aa9dae.
Nicolai, E.N., Michelson, N.J., Settell, M.L., Hara, S.A., Trevathan, J.K., Asp, A.J., Stocking, K.C., Lujan, J.L., Kozai, T.D.Y., & Ludwig, K.A. (2018). Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. Micromachines (Basel), 9(10), 494.MDPI. doi: 10.3390/mi9100494.
Salatino, J.W., Ludwig, K.A., Kozai, T.D.Y., & Purcell, E.K. (2018). Publisher Correction: Glial responses to implanted electrodes in the brain. Nat Biomed Eng, 2(1), 52.Springer Nature. doi: 10.1038/s41551-017-0177-7.
Trevathan, J.K., J., A., Nicolai, E.N., Trevathan, J.M., Kremer, N.A., Kozai, T.D., Cheng, D., Schachter, M., Nassi, J.J., Otte, S.L., Parker, J.G., Lujan, J.L., & Ludwig, K.A. (2018). Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures. 460220.Cold Spring Harbor Laboratory. doi: 10.1101/460220.
Wellman, S.M., & Kozai, T.D.Y. (2018). In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation. Biomaterials, 164, 121-133.Elsevier. doi: 10.1016/j.biomaterials.2018.02.037.
Wellman, S.M., Cambi, F., & Kozai, T.D. (2018). The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. Biomaterials, 183, 200-217.Elsevier. doi: 10.1016/j.biomaterials.2018.08.046.
Wellman, S.M., Eles, J.R., Ludwig, K.A., Seymour, J.P., Michelson, N.J., McFadden, W.E., Vazquez, A.L., & Kozai, T.D.Y. (2018). A Materials Roadmap to Functional Neural Interface Design. Adv Funct Mater, 28(12), 1701269.Wiley. doi: 10.1002/adfm.201701269.
Du, Z.J., Kolarcik, C.L., Kozai, T.D.Y., Luebben, S.D., Sapp, S.A., Zheng, X.S., Nabity, J.A., & Cui, X.T. (2017). Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater, 53, 46-58.Elsevier. doi: 10.1016/j.actbio.2017.02.010.
Eles, J.R., Vazquez, A.L., Snyder, N.R., Lagenaur, C., Murphy, M.C., Kozai, T.D.Y., & Cui, X.T. (2017). Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials, 113, 279-292.Elsevier. doi: 10.1016/j.biomaterials.2016.10.054.
Salatino, J.W., Ludwig, K.A., Kozai, T.D.Y., & Purcell, E.K. (2017). Glial responses to implanted electrodes in the brain. Nat Biomed Eng, 1(11), 862-877.Springer Nature. doi: 10.1038/s41551-017-0154-1.
Wellman, S.M., & Kozai, T.D.Y. (2017). Understanding the Inflammatory Tissue Reaction to Brain Implants To Improve Neurochemical Sensing Performance. ACS Chem Neurosci, 8(12), 2578-2582.American Chemical Society (ACS). doi: 10.1021/acschemneuro.7b00403.
Khilwani, R., Gilgunn, P.J., Kozai, T.D.Y., Ong, X.C., Korkmaz, E., Gunalan, P.K., Cui, X.T., Fedder, G.K., & Ozdoganlar, O.B. (2016). Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization. Biomed Microdevices, 18(6), 97.Springer Nature. doi: 10.1007/s10544-016-0125-4.
Kozai, T.D.Y., Catt, K., Du, Z., Na, K., Srivannavit, O., Haque, R.U.M., Seymour, J., Wise, K.D., Yoon, E., & Cui, X.T. (2016). Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE Trans Biomed Eng, 63(1), 111-119.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TBME.2015.2445713.
Kozai, T.D.Y., Eles, J.R., Vazquez, A.L., & Cui, X.T. (2016). Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights. J Neurosci Methods, 258, 46-55.Elsevier. doi: 10.1016/j.jneumeth.2015.10.007.
Kozai, T.D.Y., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C., & Cui, X.T. (2016). Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials, 87, 157-169.Elsevier. doi: 10.1016/j.biomaterials.2016.02.013.
Patel, P.R., Zhang, H., Robbins, M.T., Nofar, J.B., Marshall, S.P., Kobylarek, M.J., Kozai, T.D.Y., Kotov, N.A., & Chestek, C.A. (2016). Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J Neural Eng, 13(6), 066002.IOP Publishing. doi: 10.1088/1741-2560/13/6/066002.
Alba, N.A., Du, Z.J., Catt, K.A., Kozai, T.D.Y., & Cui, X.T. (2015). In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. Biosensors (Basel), 5(4), 618-646.MDPI. doi: 10.3390/bios5040618.
Kolarcik, C.L., Catt, K., Rost, E., Albrecht, I.N., Bourbeau, D., Du, Z., Kozai, T.D.Y., Luo, X., Weber, D.J., & Cui, X.T. (2015). Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J Neural Eng, 12(1), 016008.IOP Publishing. doi: 10.1088/1741-2560/12/1/016008.
Kolarcik, C.L., Luebben, S.D., Sapp, S.A., Hanner, J., Snyder, N., Kozai, T.D.Y., Chang, E., Nabity, J.A., Nabity, S.T., Lagenaur, C.F., & Cui, X.T. (2015). Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter, 11(24), 4847-4861.Royal Society of Chemistry (RSC). doi: 10.1039/c5sm00174a.
Kozai, T.D.Y., & Vazquez, A.L. (2015). Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: New Challenges and Opportunities. J Mater Chem B, 3(25), 4965-4978.Royal Society of Chemistry (RSC). doi: 10.1039/C5TB00108K.
Kozai, T.D.Y., Catt, K., Li, X., Gugel, Z.V., Olafsson, V.T., Vazquez, A.L., & Cui, X.T. (2015). Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials, 37, 25-39.Elsevier. doi: 10.1016/j.biomaterials.2014.10.040.
Kozai, T.D.Y., Du, Z., Gugel, Z.V., Smith, M.A., Chase, S.M., Bodily, L.M., Caparosa, E.M., Friedlander, R.M., & Cui, X.T. (2015). Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. J Neurosci Methods, 242, 15-40.Elsevier. doi: 10.1016/j.jneumeth.2014.12.010.
Kozai, T.D.Y., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C., & Cui, X.T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci, 6(1), 48-67.American Chemical Society (ACS). doi: 10.1021/cn500256e.
Patel, P.R., Na, K., Zhang, H., Kozai, T.D.Y., Kotov, N.A., Yoon, E., & Chestek, C.A. (2015). Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J Neural Eng, 12(4), 046009.IOP Publishing. doi: 10.1088/1741-2560/12/4/046009.
Kozai, T.D.Y., Alba, N.A., Zhang, H., Kotov, N.A., Gaunt, R.A., & Cui, X.T. (2014). Nanostructured Coatings for Improved Charge Delivery to Neurons. In Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. (pp. 71-134).Springer Nature. doi: 10.1007/978-1-4899-8038-0_4.
Kozai, T.D.Y., Gugel, Z., Li, X., Gilgunn, P.J., Khilwani, R., Ozdoganlar, O.B., Fedder, G.K., Weber, D.J., & Cui, X.T. (2014). Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials, 35(34), 9255-9268.Elsevier. doi: 10.1016/j.biomaterials.2014.07.039.
Kozai, T.D.Y., Li, X., Bodily, L.M., Caparosa, E.M., Zenonos, G.A., Carlisle, D.L., Friedlander, R.M., & Cui, X.T. (2014). Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials, 35(36), 9620-9634.Elsevier. doi: 10.1016/j.biomaterials.2014.08.006.
Kozai, T.D.Y., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K.L., Lahann, J., Kotov, N.A., & Kipke, D.R. (2012). Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater, 11(12), 1065-1073.Springer Nature. doi: 10.1038/nmat3468.
Kozai, T.D.Y., Vazquez, A.L., Weaver, C.L., Kim, S.G., & Cui, X.T. (2012). In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J Neural Eng, 9(6), 066001.IOP Publishing. doi: 10.1088/1741-2560/9/6/066001.
Kozai, T.D.Y., Marzullo, T.C., Hooi, F., Langhals, N.B., Majewska, A.K., Brown, E.B., & Kipke, D.R. (2010). Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping. J Neural Eng, 7(4), 046011.IOP Publishing. doi: 10.1088/1741-2560/7/4/046011.
Escamilla-Mackert, T., Langhals, N.B., Kozai, T.D.Y., & Kipke, D.R. (2009). Insertion of a three dimensional silicon microelectrode assembly through a thick meningeal membrane. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 1616-1618.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/IEMBS.2009.5333221.
Kozai, T.D.Y., & Kipke, D.R. (2009). Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J Neurosci Methods, 184(2), 199-205.Elsevier. doi: 10.1016/j.jneumeth.2009.08.002.
Gilgunn, P.J., Khilwani, R., Kozai, T.Y., Weber, D.J., Cui, X., Erdos, G., Ozdoganlar, O.B., & Fedder, G.K. (2012). AN ULTRA-COMPLIANT, SCALABLE NEURAL PROBE WITH MOLDED BIODISSOLVABLE DELIVERY VEHICLE. In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 1, (pp. 56-59).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/memsys.2012.6170092.