headshot of Takashi Kozai

Takashi Kozai

Associate Professor
Linkedin Bioengineering Department

overview

Takashi Kozai is an Associate Professor of Bioengineering at the University of Pittsburgh. He received the B.A. (magna cum laude) degree with distinction in Molecular, Cellular, and Developmental Biology, and another B.A. degree with distinction in Biochemistry from the University of Colorado, Boulder, CO, USA, both in 2005, and M.S. and Ph.D. degrees in Biomedical Engineering from the University of Michigan, Ann Arbor, MI, USA, in 2007 and 2011, respectively. From 2011 to 2013, he was a Postdoc with the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, where he was appointed as a Research Assistant Professor from 2013-2015 before starting his own lab. His research interests include: (1) Manipulation of neuronal and non-neuronal cells to influence the function of neuronal networks, (2) Understanding the role of neuroimmune cells in neuronal damage and regeneration, and (3) Improving long-term performance of implanted electrodes and integrating man-made (engineered) technology with the human brain for the purpose of studying normal and injured/diseased nervous systems in vivo at the cellular level, as well as restoring function to patients.

about

Postdoctoral in Bioengineering, University of Pittsburgh, 2011 - 2013

PhD, Biomedical Engineering, University of Michigan, 2005 - 2011

MS, Biomedical Engineering, University of Michigan, 2005 - 2007

BA, Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 2001 - 2005

BA, Biochemistry, University of Colorado, Boulder, 2001 - 2005

Wellman, S.M., Forrest, A.M., Douglas, M.M., Subbaraman, A., Zhang, G., & Kozai, T.D.Y. (2025). Dynamic changes in the structure and function of brain mural cells around chronically implanted microelectrodes. Biomaterials, 315, 122963.Elsevier. doi: 10.1016/j.biomaterials.2024.122963.

Chen, K., Forrest, A.M., Burgos, G.G., & Kozai, T.D.Y. (2024). Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng, 21(3), 036033.IOP Publishing. doi: 10.1088/1741-2552/ad5049.

Chen, K., Wu, B., Krahe, D., Vazquez, A., Siegenthaler, J.R., Rechenberg, R., Li, W., Cui, X.T., & Kozai, T.D.Y. (2024). Potential of Photoelectric Stimulation with Ultrasmall Carbon Electrode on Neural Tissue: New Directions in Neuromodulation Technology Development. 2024.02.17.580823.Cold Spring Harbor Laboratory. doi: 10.1101/2024.02.17.580823.

Chen, K., Wu, B., Krahe, D., Vazquez, A., Siegenthaler, J.R., Rechenberg, R., Li, W., Cui, X.T., & Kozai, T.D.Y. (2024). Potential of Photoelectric Stimulation with Ultrasmall Carbon Electrode on Neural Tissue: New Directions in Neurostimulation Technology Development. ADVANCED FUNCTIONAL MATERIALS, 34(41).Wiley. doi: 10.1002/adfm.202403164.

Hughes, C.L., Stieger, K.A., Chen, K., Vazquez, A.L., & Kozai, T.D. (2024). Spatiotemporal properties of cortical excitatory and inhibitory neuron activation by sustained and bursting electrical microstimulation. In bioRxiv. doi: 10.1101/2024.09.30.615029.

Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padilla, C.G., Gheres, K.W., Broussard, J.I., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2024). Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun, 15(1), 5512.Springer Nature. doi: 10.1038/s41467-024-49709-9.

Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padilla, C.G., Gheres, K.W., Broussard, J.I., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2024). Author Correction: Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun, 15(1), 7618.Springer Nature. doi: 10.1038/s41467-024-52088-w.

McNamara, I.N., Wellman, S.M., Li, L., Eles, J.R., Savya, S., Sohal, H.S., Angle, M.R., & Kozai, T.D.Y. (2024). Electrode sharpness and insertion speed reduce tissue damage near high-density penetrating arrays. J Neural Eng, 21(2), 026030.IOP Publishing. doi: 10.1088/1741-2552/ad36e1.

Robbins, C., Eles, J., Zheng, X.S., Kozai, T., Cui, X.T., & Vazquez, A. (2024). Longitudinal changes in electrophysiology and widefield calcium imaging following electrode implantation. J Neural Eng, 21(6), 066043.IOP Publishing. doi: 10.1088/1741-2552/ada0eb.

Suematsu, N., Vazquez, A.L., & Kozai, T.D. (2024). Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. bioRxiv, 5(01-22), 2024.01.01.573814.Cold Spring Harbor Laboratory. doi: 10.1101/2024.01.01.573814.

Suematsu, N., Vazquez, A.L., & Kozai, T.D.Y. (2024). Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. J Neural Eng, 21(2), 026033.IOP Publishing. doi: 10.1088/1741-2552/ad3853.

Wellman, S., Forrest, A.M., Douglas, M.M., Subbaraman, A., Zhang, G., & Kozai, T.D.Y. (2024). Dynamic changes in structure and function of brain mural cells around chronically implanted microelectrodes. bioRxiv, 5(06-24), 2024.06.11.598494.Cold Spring Harbor Laboratory. doi: 10.1101/2024.06.11.598494.

Chen, K., Cambi, F., & Kozai, T.D.Y. (2023). Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. bioRxiv, 4(02-10), 2023.01.31.526463.Cold Spring Harbor Laboratory. doi: 10.1101/2023.01.31.526463.

Chen, K., Cambi, F., & Kozai, T.D.Y. (2023). Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials, 301, 122210.Elsevier. doi: 10.1016/j.biomaterials.2023.122210.

Chen, K., Forrest, A., Gonzalez Burgos, G., & Kozai, T.D.Y. (2023). Neuronal functional connectivity is impaired in a layer dependent manner near the chronically implanted microelectrodes. bioRxiv, 4(11-20), 2023.11.06.565852.Cold Spring Harbor Laboratory. doi: 10.1101/2023.11.06.565852.

Chen, K., Garcia Padilla, C., Kiselyov, K., & Kozai, T.D.Y. (2023). Cell-specific alterations in autophagy-lysosomal activity near the chronically implanted microelectrodes. Biomaterials, 302, 122316.Elsevier. doi: 10.1016/j.biomaterials.2023.122316.

Chen, K., Padilla, C.G., Kiselyov, K., & Kozai, T. (2023). Impairment of autophagy-lysosomal activity near the chronically implanted microelectrodes. 2023.05.31.543108.Cold Spring Harbor Laboratory. doi: 10.1101/2023.05.31.543108.

Hughes, C., & Kozai, T. (2023). Dynamic amplitude modulation of microstimulation evokes biomimetic onset and offset transients and reduces depression of evoked calcium responses in sensory cortices. Brain Stimul, 16(3), 939-965.Elsevier. doi: 10.1016/j.brs.2023.05.013.

Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padill, C.G., Gheres, K.W., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2023). Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. bioRxiv, 4(12-15), 2023.12.05.570162.Cold Spring Harbor Laboratory. doi: 10.1101/2023.12.05.570162.

McNamara, I.N., Wellman, S.M., Li, L., Eles, J.R., Savya, S., Sohal, H.S., Angle, M.R., & Kozai, T.D.Y. (2023). Electrode sharpness and insertion speed reduce tissue damage near high-density penetrating arrays. 2023.11.22.568119.Cold Spring Harbor Laboratory. doi: 10.1101/2023.11.22.568119.

Wellman, S.M., Coyne, O.A., Douglas, M.M., & Kozai, T.D.Y. (2023). Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease. bioRxiv, 4(02-16), 2023.02.11.528131.Cold Spring Harbor Laboratory. doi: 10.1101/2023.02.11.528131.

Wellman, S.M., Coyne, O.A., Douglas, M.M., & Kozai, T.D.Y. (2023). Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease. J Neural Eng, 20(4), 046044.IOP Publishing. doi: 10.1088/1741-2552/aceca5.

Hughes, C., & Kozai, T. (2022). Biomimetic microstimulation of sensory cortices. 2022.11.11.516221.Cold Spring Harbor Laboratory. doi: 10.1101/2022.11.11.516221.

Savya, S.P., Li, F., Lam, S., Wellman, S.M., Stieger, K.C., Chen, K., Eles, J.R., & Kozai, T.D.Y. (2022). In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. 2022.07.01.498483.Cold Spring Harbor Laboratory. doi: 10.1101/2022.07.01.498483.

Savya, S.P., Li, F., Lam, S., Wellman, S.M., Stieger, K.C., Chen, K., Eles, J.R., & Kozai, T.D.Y. (2022). In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials, 289, 121784.Elsevier. doi: 10.1016/j.biomaterials.2022.121784.

Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2022). Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. 2022.01.14.476351.Cold Spring Harbor Laboratory. doi: 10.1101/2022.01.14.476351.

Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2022). Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. J Neural Eng, 19(2), 026024.IOP Publishing. doi: 10.1088/1741-2552/ac5bf5.

Chen, K., Stieger, K.C., & Kozai, T.D. (2021). Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Curr Opin Biotechnol, 72, 112-120.Elsevier. doi: 10.1016/j.copbio.2021.10.008.

Chen, K., Wellman, S.M., Yaxiaer, Y., Eles, J.R., & Kozai, T.D. (2021). In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. Biomaterials, 268, 120526.Elsevier. doi: 10.1016/j.biomaterials.2020.120526.

Dubaniewicz, M., Eles, J.R., Lam, S., Song, S., Cambi, F., Sun, D., Wellman, S.M., & Kozai, T.D.Y. (2021). Inhibition of Na+/H+exchanger modulates microglial activation and scar formation following microelectrode implantation. J Neural Eng, 18(4), 045001.IOP Publishing. doi: 10.1088/1741-2552/abe8f1.

Eles, J.R., Stieger, K.C., & Kozai, T.D.Y. (2021). The temporal pattern of intracortical microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons. J Neural Eng, 18(1), 015001.IOP Publishing. doi: 10.1088/1741-2552/abc29c.

Fitz, N.F., Nam, K.N., Wolfe, C.M., Letronne, F., Playso, B.E., Iordanova, B.E., Kozai, T.D.Y., Biedrzycki, R.J., Kagan, V.E., Tyurina, Y.Y., Han, X., Lefterov, I., & Koldamova, R. (2021). Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nat Commun, 12(1), 3416.Springer Nature. doi: 10.1038/s41467-021-23762-0.

Sahasrabuddhe, K., Khan, A.A., Singh, A.P., Stern, T.M., Ng, Y., Tadić, A., Orel, P., LaReau, C., Pouzzner, D., Nishimura, K., Boergens, K.M., Shivakumar, S., Hopper, M.S., Kerr, B., Hanna, M.E.S., Edgington, R.J., McNamara, I., Fell, D., Gao, P., Babaie-Fishani, A., Veijalainen, S., Klekachev, A.V., Stuckey, A.M., Luyssaert, B., Kozai, T.D.Y., Xie, C., Gilja, V., Dierickx, B., Kong, Y., Straka, M., Sohal, H.S., & Angle, M.R. (2021). The Argo: a high channel count recording system for neural recording in vivo. J Neural Eng, 18(1), 015002.IOP Publishing. doi: 10.1088/1741-2552/abd0ce.

Bettinger, C.J., Ecker, M., Kozai, T.D.Y., Malliaras, G.G., Meng, E., & Voit, W. (2020). Recent advances in neural interfaces-Materials chemistry to clinical translation. MRS Bull, 45(8), 655-668.Springer Nature. doi: 10.1557/mrs.2020.195.

Eles, J.R., & Kozai, T.D.Y. (2020). In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials, 234, 119767.Elsevier. doi: 10.1016/j.biomaterials.2020.119767.

Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2020). In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. J Neurosci Res, 98(10), 2072-2095.Wiley. doi: 10.1002/jnr.24676.

Trevathan, J.K., Asp, A.J., Nicolai, E.N., Trevathan, J., Kremer, N.A., Kozai, T.D.Y., Cheng, D., Schachter, M., Nassi, J.J., Otte, S.L., Parker, J.G., Lujan, J.L., & Ludwig, K. (2020). Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures. J Neural Eng, 18(2), 10.1088/1741-12552/abb7a4.IOP Publishing. doi: 10.1088/1741-2552/abb7a4.

Wellman, S.M., Guzman, K., Stieger, K.C., Brink, L.E., Sridhar, S., Dubaniewicz, M.T., Li, L., Cambi, F., & Kozai, T.D.Y. (2020). Cuprizone-induced oligodendrocyte loss and demyelination impairs recording performance of chronically implanted neural interfaces. Biomaterials, 239, 119842.Elsevier. doi: 10.1016/j.biomaterials.2020.119842.

Yang, Q., Wu, B., Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2020). Zwitterionic Polymer Coating Suppresses Microglial Encapsulation to Neural Implants In Vitro and In Vivo. Adv Biosyst, 4(6), e1900287.Wiley. doi: 10.1002/adbi.201900287.

Baranov, S.V., Baranova, O.V., Yablonska, S., Suofu, Y., Vazquez, A.L., Kozai, T.D.Y., Cui, X.T., Ferrando, L.M., Larkin, T.M., Tyurina, Y.Y., Kagan, V.E., Carlisle, D.L., Kristal, B.S., & Friedlander, R.M. (2019). Mitochondria modulate programmed neuritic retraction. Proc Natl Acad Sci U S A, 116(2), 650-659.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1811021116.

Chen, K., Lam, S., & Kozai, T.D. (2019). What directions of improvements in electrode designs should we expect in the next 5-10 years?. Bioelectron Med (Lond), 2(3), 119-122.Taylor & Francis. doi: 10.2217/bem-2019-0023.

Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2019). Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study. Biomaterials, 195, 111-123.Elsevier. doi: 10.1016/j.biomaterials.2018.12.031.

Ereifej, E.S., Shell, C.E., Schofield, J.S., Charkhkar, H., Cuberovic, I., Dorval, A.D., Graczyk, E.L., Kozai, T.D.Y., Otto, K.J., Tyler, D.J., Welle, C.G., Widge, A.S., Zariffa, J., Moritz, C.T., Bourbeau, D.J., & Marasco, P.D. (2019). Neural engineering: the process, applications, and its role in the future of medicine. J Neural Eng, 16(6), 063002.IOP Publishing. doi: 10.1088/1741-2552/ab4869.

Kozai, T.D.Y., & Purcell, E.K. (2019). Pipette-integrated microelectrodes. Nat Biomed Eng, 3(9), 682-683.Springer Nature. doi: 10.1038/s41551-019-0452-x.

Michelson, N.J., Eles, J.R., Vazquez, A.L., Ludwig, K.A., & Kozai, T.D.Y. (2019). Calcium activation of cortical neurons by continuous electrical stimulation: Frequency dependence, temporal fidelity, and activation density. J Neurosci Res, 97(5), 620-638.Wiley. doi: 10.1002/jnr.24370.

Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2019). In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. 2019.12.16.878892.Cold Spring Harbor Laboratory. doi: 10.1101/2019.12.16.878892.

Stocking, K.C., Vazquez, A.L., & Kozai, T.D.Y. (2019). Intracortical Neural Stimulation With Untethered, Ultrasmall Carbon Fiber Electrodes Mediated by the Photoelectric Effect. IEEE Trans Biomed Eng, 66(8), 2402-2412.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TBME.2018.2889832.

Wellman, S.M., Li, L., Yaxiaer, Y., McNamara, I., & Kozai, T.D.Y. (2019). Revealing Spatial and Temporal Patterns of Cell Death, Glial Proliferation, and Blood-Brain Barrier Dysfunction Around Implanted Intracortical Neural Interfaces. Front Neurosci, 13(MAY), 493.Frontiers. doi: 10.3389/fnins.2019.00493.

Cody, P.A., Eles, J.R., Lagenaur, C.F., Kozai, T.D.Y., & Cui, X.T. (2018). Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model. Biomaterials, 161, 117-128.Elsevier. doi: 10.1016/j.biomaterials.2018.01.025.

Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2018). In vivo imaging of neuronal calcium during electrode implantation: Spatial and temporal mapping of damage and recovery. Biomaterials, 174, 79-94.Elsevier. doi: 10.1016/j.biomaterials.2018.04.043.

Golabchi, A., Wu, B., Li, X., Carlisle, D.L., Kozai, T.D.Y., Friedlander, R.M., & Cui, X.T. (2018). Melatonin improves quality and longevity of chronic neural recording. Biomaterials, 180, 225-239.Elsevier. doi: 10.1016/j.biomaterials.2018.07.026.

Iordanova, B., Vazquez, A., Kozai, T.D., Fukuda, M., & Kim, S.G. (2018). Optogenetic investigation of the variable neurovascular coupling along the interhemispheric circuits. J Cereb Blood Flow Metab, 38(4), 627-640.SAGE Publications. doi: 10.1177/0271678X18755225.

Kozai, T.D.Y. (2018). The History and Horizons of Microscale Neural Interfaces. Micromachines (Basel), 9(9), 445.MDPI. doi: 10.3390/mi9090445.

Michelson, N.J., & Kozai, T.D.Y. (2018). Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1. J Neurophysiol, 120(5), 2232-2245.American Physiological Society. doi: 10.1152/jn.00299.2018.

Michelson, N.J., Eles, J.R., Vazquez, A.L., Ludwig, K.A., & Kozai, T.D. (2018). Calcium activation of cortical neurons by continuous electrical stimulation: Frequency-dependence, temporal fidelity and activation density. 338525.Cold Spring Harbor Laboratory. doi: 10.1101/338525.

Michelson, N.J., Vazquez, A.L., Eles, J.R., Salatino, J.W., Purcell, E.K., Williams, J.J., Cui, X.T., & Kozai, T.D.Y. (2018). Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface. J Neural Eng, 15(3), 033001.IOP Publishing. doi: 10.1088/1741-2552/aa9dae.

Nicolai, E.N., Michelson, N.J., Settell, M.L., Hara, S.A., Trevathan, J.K., Asp, A.J., Stocking, K.C., Lujan, J.L., Kozai, T.D.Y., & Ludwig, K.A. (2018). Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. Micromachines (Basel), 9(10), 494.MDPI. doi: 10.3390/mi9100494.

Salatino, J.W., Ludwig, K.A., Kozai, T.D.Y., & Purcell, E.K. (2018). Publisher Correction: Glial responses to implanted electrodes in the brain. Nat Biomed Eng, 2(1), 52.Springer Nature. doi: 10.1038/s41551-017-0177-7.

Trevathan, J.K., J., A., Nicolai, E.N., Trevathan, J.M., Kremer, N.A., Kozai, T.D., Cheng, D., Schachter, M., Nassi, J.J., Otte, S.L., Parker, J.G., Lujan, J.L., & Ludwig, K.A. (2018). Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures. 460220.Cold Spring Harbor Laboratory. doi: 10.1101/460220.

Wellman, S.M., & Kozai, T.D.Y. (2018). In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation. Biomaterials, 164, 121-133.Elsevier. doi: 10.1016/j.biomaterials.2018.02.037.

Wellman, S.M., Cambi, F., & Kozai, T.D. (2018). The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. Biomaterials, 183, 200-217.Elsevier. doi: 10.1016/j.biomaterials.2018.08.046.

Wellman, S.M., Eles, J.R., Ludwig, K.A., Seymour, J.P., Michelson, N.J., McFadden, W.E., Vazquez, A.L., & Kozai, T.D.Y. (2018). A Materials Roadmap to Functional Neural Interface Design. Adv Funct Mater, 28(12), 1701269.Wiley. doi: 10.1002/adfm.201701269.

Du, Z.J., Kolarcik, C.L., Kozai, T.D.Y., Luebben, S.D., Sapp, S.A., Zheng, X.S., Nabity, J.A., & Cui, X.T. (2017). Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater, 53, 46-58.Elsevier. doi: 10.1016/j.actbio.2017.02.010.

Eles, J.R., Vazquez, A.L., Snyder, N.R., Lagenaur, C., Murphy, M.C., Kozai, T.D.Y., & Cui, X.T. (2017). Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials, 113, 279-292.Elsevier. doi: 10.1016/j.biomaterials.2016.10.054.

Salatino, J.W., Ludwig, K.A., Kozai, T.D.Y., & Purcell, E.K. (2017). Glial responses to implanted electrodes in the brain. Nat Biomed Eng, 1(11), 862-877.Springer Nature. doi: 10.1038/s41551-017-0154-1.

Wellman, S.M., & Kozai, T.D.Y. (2017). Understanding the Inflammatory Tissue Reaction to Brain Implants To Improve Neurochemical Sensing Performance. ACS Chem Neurosci, 8(12), 2578-2582.American Chemical Society (ACS). doi: 10.1021/acschemneuro.7b00403.

Khilwani, R., Gilgunn, P.J., Kozai, T.D.Y., Ong, X.C., Korkmaz, E., Gunalan, P.K., Cui, X.T., Fedder, G.K., & Ozdoganlar, O.B. (2016). Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization. Biomed Microdevices, 18(6), 97.Springer Nature. doi: 10.1007/s10544-016-0125-4.

Kozai, T.D.Y., Catt, K., Du, Z., Na, K., Srivannavit, O., Haque, R.U.M., Seymour, J., Wise, K.D., Yoon, E., & Cui, X.T. (2016). Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE Trans Biomed Eng, 63(1), 111-119.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TBME.2015.2445713.

Kozai, T.D.Y., Eles, J.R., Vazquez, A.L., & Cui, X.T. (2016). Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights. J Neurosci Methods, 258, 46-55.Elsevier. doi: 10.1016/j.jneumeth.2015.10.007.

Kozai, T.D.Y., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C., & Cui, X.T. (2016). Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials, 87, 157-169.Elsevier. doi: 10.1016/j.biomaterials.2016.02.013.

Patel, P.R., Zhang, H., Robbins, M.T., Nofar, J.B., Marshall, S.P., Kobylarek, M.J., Kozai, T.D.Y., Kotov, N.A., & Chestek, C.A. (2016). Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J Neural Eng, 13(6), 066002.IOP Publishing. doi: 10.1088/1741-2560/13/6/066002.

Alba, N.A., Du, Z.J., Catt, K.A., Kozai, T.D.Y., & Cui, X.T. (2015). In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. Biosensors (Basel), 5(4), 618-646.MDPI. doi: 10.3390/bios5040618.

Kolarcik, C.L., Catt, K., Rost, E., Albrecht, I.N., Bourbeau, D., Du, Z., Kozai, T.D.Y., Luo, X., Weber, D.J., & Cui, X.T. (2015). Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J Neural Eng, 12(1), 016008.IOP Publishing. doi: 10.1088/1741-2560/12/1/016008.

Kolarcik, C.L., Luebben, S.D., Sapp, S.A., Hanner, J., Snyder, N., Kozai, T.D.Y., Chang, E., Nabity, J.A., Nabity, S.T., Lagenaur, C.F., & Cui, X.T. (2015). Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter, 11(24), 4847-4861.Royal Society of Chemistry (RSC). doi: 10.1039/c5sm00174a.

Kozai, T.D.Y., & Vazquez, A.L. (2015). Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: New Challenges and Opportunities. J Mater Chem B, 3(25), 4965-4978.Royal Society of Chemistry (RSC). doi: 10.1039/C5TB00108K.

Kozai, T.D.Y., Catt, K., Li, X., Gugel, Z.V., Olafsson, V.T., Vazquez, A.L., & Cui, X.T. (2015). Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials, 37, 25-39.Elsevier. doi: 10.1016/j.biomaterials.2014.10.040.

Kozai, T.D.Y., Du, Z., Gugel, Z.V., Smith, M.A., Chase, S.M., Bodily, L.M., Caparosa, E.M., Friedlander, R.M., & Cui, X.T. (2015). Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. J Neurosci Methods, 242, 15-40.Elsevier. doi: 10.1016/j.jneumeth.2014.12.010.

Kozai, T.D.Y., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C., & Cui, X.T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci, 6(1), 48-67.American Chemical Society (ACS). doi: 10.1021/cn500256e.

Patel, P.R., Na, K., Zhang, H., Kozai, T.D.Y., Kotov, N.A., Yoon, E., & Chestek, C.A. (2015). Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J Neural Eng, 12(4), 046009.IOP Publishing. doi: 10.1088/1741-2560/12/4/046009.

Kozai, T.D.Y., Alba, N.A., Zhang, H., Kotov, N.A., Gaunt, R.A., & Cui, X.T. (2014). Nanostructured Coatings for Improved Charge Delivery to Neurons. In Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. (pp. 71-134).Springer Nature. doi: 10.1007/978-1-4899-8038-0_4.

Kozai, T.D.Y., Gugel, Z., Li, X., Gilgunn, P.J., Khilwani, R., Ozdoganlar, O.B., Fedder, G.K., Weber, D.J., & Cui, X.T. (2014). Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials, 35(34), 9255-9268.Elsevier. doi: 10.1016/j.biomaterials.2014.07.039.

Kozai, T.D.Y., Li, X., Bodily, L.M., Caparosa, E.M., Zenonos, G.A., Carlisle, D.L., Friedlander, R.M., & Cui, X.T. (2014). Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials, 35(36), 9620-9634.Elsevier. doi: 10.1016/j.biomaterials.2014.08.006.

Kozai, T.D.Y., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K.L., Lahann, J., Kotov, N.A., & Kipke, D.R. (2012). Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater, 11(12), 1065-1073.Springer Nature. doi: 10.1038/nmat3468.

Kozai, T.D.Y., Vazquez, A.L., Weaver, C.L., Kim, S.G., & Cui, X.T. (2012). In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J Neural Eng, 9(6), 066001.IOP Publishing. doi: 10.1088/1741-2560/9/6/066001.

Kozai, T.D.Y., Marzullo, T.C., Hooi, F., Langhals, N.B., Majewska, A.K., Brown, E.B., & Kipke, D.R. (2010). Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping. J Neural Eng, 7(4), 046011.IOP Publishing. doi: 10.1088/1741-2560/7/4/046011.

Escamilla-Mackert, T., Langhals, N.B., Kozai, T.D.Y., & Kipke, D.R. (2009). Insertion of a three dimensional silicon microelectrode assembly through a thick meningeal membrane. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 1616-1618.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/IEMBS.2009.5333221.

Kozai, T.D.Y., & Kipke, D.R. (2009). Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J Neurosci Methods, 184(2), 199-205.Elsevier. doi: 10.1016/j.jneumeth.2009.08.002.

Gilgunn, P.J., Khilwani, R., Kozai, T.Y., Weber, D.J., Cui, X., Erdos, G., Ozdoganlar, O.B., & Fedder, G.K. (2012). AN ULTRA-COMPLIANT, SCALABLE NEURAL PROBE WITH MOLDED BIODISSOLVABLE DELIVERY VEHICLE. In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 1, (pp. 56-59).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/memsys.2012.6170092.