Postdoc in Neurocardiology, University of California, Los Angeles, 2016 - 2019
PhD in Biomedical Engineering, University of Montreal, 2012 - 2015
Masters in Electrical and computer Engineering, Concordia University, 2008 - 2010
Bachelors in Computer Science and Engineering, Shiraz University, 2003 - 2007
Kuwabara, Y., Wong, B., Mahajan, A., & Salavatian, S. (2024). Pharmacologic, Surgical, and Device-Based Cardiac Neuromodulation. Cardiac Electrophysiology Clinics, 16(3), 315-324.Elsevier. doi: 10.1016/j.ccep.2023.12.002.
Salavatian, S., Spinelli, J.C., Schaefer, J.A., Libbus, I., Mahajan, A., & Armour, J.A. (2024). Cardiopulmonary nerve stimulation as a novel therapy for cardiac autonomic nervous system modulation. Cambridge University Press (CUP). doi: 10.33774/coe-2024-345bp.
Salavatian, S., Wong, B., Kuwabara, Y., Fritz, J.R., Varghese, C.G., Howard-Quijano, K., Armour, J.A., Foreman, R.D., Ardell, J.L., & Mahajan, A. (2024). Comparing the Memory Effects of 50-Hz Low-Frequency and 10-kHz High-Frequency Thoracic Spinal Cord Stimulation on Spinal Neural Network in a Myocardial Infarction Porcine Model. NEUROMODULATION, 27(7), 1177-1186.Elsevier. doi: 10.1016/j.neurom.2024.06.002.
Howard-Quijano, K., Kuwabara, Y., Yamaguchi, T., Roman, K., Salavatian, S., Taylor, B., & Mahajan, A. (2023). GABAergic Signaling during Spinal Cord Stimulation Reduces Cardiac Arrhythmias in a Porcine Model. ANESTHESIOLOGY, 138(4), 372-387.Wolters Kluwer. doi: 10.1097/ALN.0000000000004516.
Kuwabara, Y., Howard-Quijano, K., Salavatian, S., Yamaguchi, T., Saba, S., & Mahajan, A. (2023). Thoracic dorsal root ganglion stimulation reduces acute myocardial ischemia induced ventricular arrhythmias. FRONTIERS IN NEUROSCIENCE, 17, 1091230.Frontiers. doi: 10.3389/fnins.2023.1091230.
Salavatian, S., Kuwabara, Y., Wong, B., Fritz, J.R.R., Howard-Quijano, K., Foreman, R.D.D., Armour, J.A., Ardell, J.L.L., & Mahajan, A. (2023). Spinal neuromodulation mitigates myocardial ischemia-induced sympathoexcitation by suppressing the intermediolateral nucleus hyperactivity and spinal neural synchrony. FRONTIERS IN NEUROSCIENCE, 17, 1180294.Frontiers. doi: 10.3389/fnins.2023.1180294.
Salavatian, S., Robbins, E.M., Kuwabara, Y., Castagnola, E., Cui, X.T., & Mahajan, A. (2023). Real-time in vivo thoracic spinal glutamate sensing reveals spinal hyperactivity during myocardial ischemia. bioRxiv, 4(03-29), 2023.03.11.531911.Cold Spring Harbor Laboratory. doi: 10.1101/2023.03.11.531911.
Salavatian, S., Robbins, E.M., Kuwabara, Y., Castagnola, E., Cui, X.T., & Mahajan, A. (2023). Real-time in vivo thoracic spinal glutamate sensing during myocardial ischemia. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 325(6), H1304-H1317.American Physiological Society. doi: 10.1152/ajpheart.00299.2023.
Kulkarni, K., Salavatian, S., & Stavrakis, S. (2022). Editorial: Advances in Cardiac Pacing and Neural Control Strategies: Basic, Translational and Clinical Research. FRONTIERS IN PHYSIOLOGY, 13, 866991.Frontiers. doi: 10.3389/fphys.2022.866991.
Salavatian, S., Hoang, J.D., Yamaguchi, N., Lokhandwala, Z.A., Swid, M.A., Armour, J.A., Ardell, J.L., & Vaseghi, M. (2022). Myocardial infarction reduces cardiac nociceptive neurotransmission through the. JCI INSIGHT, 7(4), e155747.American Society for Clinical Investigation. doi: 10.1172/jci.insight.155747.
Tompkins, J.D.D., Buckley, U., Salavatian, S., Shivkumar, K., & Ardell, J.L.L. (2022). Vagally-mediated heart block after myocardial infarction associated with plasticity of epicardial neurons controlling the atrioventricular node. FRONTIERS IN SYNAPTIC NEUROSCIENCE, 14, 960458.Frontiers. doi: 10.3389/fnsyn.2022.960458.
Howard-Quijano, K., Yamaguchi, T., Gao, F., Kuwabara, Y., Puig, S., Lundquist, E., Salavatian, S., Taylor, B., & Mahajan, A. (2021). Spinal Cord Stimulation Reduces Ventricular Arrhythmias by Attenuating Reactive Gliosis and Activation of Spina Interneurons. JACC-CLINICAL ELECTROPHYSIOLOGY, 7(10), 1211-1225.Elsevier. doi: 10.1016/j.jacep.2021.05.016.
Kuwabara, Y., Salavatian, S., Howard-Quijano, K., Yamaguchi, T., Lundquist, E., & Mahajan, A. (2021). Neuromodulation With Thoracic Dorsal Root Ganglion Stimulation Reduces Ventricular Arrhythmogenicity. FRONTIERS IN PHYSIOLOGY, 12, 713717.Frontiers. doi: 10.3389/fphys.2021.713717.
Omura, Y., Kipke, J.P., Salavatian, S., Afyouni, A.S., Wooten, C., Herkenham, R.F., Maoz, U., Lashgari, E., Dale, E.A., Howard-Quijano, K., & Mahajan, A. (2021). Spinal Anesthesia Reduces Myocardial Ischemia-triggered Ventricular Arrhythmias by Suppressing Spinal Cord Neuronal Network Interactions in Pigs. ANESTHESIOLOGY, 134(3), 405-420.Wolters Kluwer. doi: 10.1097/ALN.0000000000003662.
Hoang, J.D., Salavatian, S., Yamaguchi, N., Swid, M.A., & Vaseghi, M. (2020). Cardiac sympathetic activation circumvents high-dose beta blocker therapy in part through release of neuropeptide Y. JCI INSIGHT, 5(11), e135519.American Society for Clinical Investigation. doi: 10.1172/jci.insight.135519.
Meijborg, V.M.F., Boukens, B.J.D., Janse, M.J., Salavatian, S., Dacey, M.J., Yoshie, K., Opthof, T., Swid, M.A., Hoang, J.D., Hanna, P., Ardell, J., Shivkumar, K., & Coronel, R. (2020). Stellate ganglion stimulation causes spatiotemporal changes in ventricular repolarization in pig. HEART RHYTHM, 17(5), 795-803.Elsevier. doi: 10.1016/j.hrthm.2019.12.022.
Yoshie, K., Rajendran, P.S., Massoud, L., Mistry, J., Swid, M.A., Wu, X., Sallam, T., Zhang, R., Goldhaber, J.I., Salavatian, S., & Ajijola, O.A. (2020). Cardiac TRPV1 afferent signaling promotes arrhythmogenic ventricular remodeling after myocardial infarction. JCI INSIGHT, 5(3), 124477.American Society for Clinical Investigation. doi: 10.1172/jci.insight.124477.
Salavatian, S., Ardell, S.M., Hammer, M., Gibbons, D., Armour, J.A., & Ardell, J.L. (2019). Thoracic spinal cord neuromodulation obtunds dorsal root ganglion afferent neuronal transduction of the ischemic ventricle. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 317(5), H1134-H1141.American Physiological Society. doi: 10.1152/ajpheart.00257.2019.
Salavatian, S., Yamaguchi, N., Hoang, J., Lin, N., Patel, S., Ardell, J.L., Armour, J.A., & Vaseghi, M. (2019). Premature ventricular contractions activate vagal afferents and alter autonomic tone: implications for premature ventricular contraction-induced cardiomyopathy. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 317(3), H607-H616.American Physiological Society. doi: 10.1152/ajpheart.00286.2019.
Yoshie, K., Rajendran, P.S., Massoud, L., Kwon, O., Tadimeti, V., Salavatian, S., Ardell, J.L., Shivkumar, K., & Ajijola, O.A. (2018). Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 314(5), H954-H966.American Physiological Society. doi: 10.1152/ajpheart.00593.2017.
Hamon, D., Rajendran, P.S., Chui, R.W., Ajijola, O.A., Irie, T., Talebi, R., Salavatian, S., Vaseghi, M., Bradfield, J.S., Armour, J.A., Ardell, J.L., & Shivkumar, K. (2017). Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control Insights From Simultaneous Cardioneural Mapping. CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 10(4), e004937.Wolters Kluwer. doi: 10.1161/CIRCEP.116.004937.
Salavatian, S., Beaumont, E., Gibbons, D., Hammer, M., Hoover, D.B., Armour, J.A., & Ardell, J.L. (2017). Thoracic spinal cord and cervical vagosympathetic neuromodulation obtund nodose sensory transduction of myocardial ischemia. AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 208, 57-65.Elsevier. doi: 10.1016/j.autneu.2017.08.005.
Vaseghi, M., Salavatian, S., Rajendran, P.S., Yagishita, D., Woodward, W.R., Hamon, D., Yamakawa, K., Irie, T., Habecker, B.A., & Shivkumar, K. (2017). Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction. JCI INSIGHT, 2(16), e86715.American Society for Clinical Investigation. doi: 10.1172/jci.insight.86715.
Salavatian, S., Beaumont, E., Longpre, J.P., Armour, J.A., Vinet, A., Jacquemet, V., Shivkumar, K., & Ardell, J.L. (2016). Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 311(5), H1311-H1320.American Physiological Society. doi: 10.1152/ajpheart.00443.2016.
Longpre, J.P., Salavatian, S., Beaumont, E., Armour, J.A., Ardell, J.L., & Jacquemet, V. (2014). Measure of synchrony in the activity of intrinsic cardiac neurons. PHYSIOLOGICAL MEASUREMENT, 35(4), 549-566.IOP Publishing. doi: 10.1088/0967-3334/35/4/549.
Beaumont, E., Salavatian, S., Southerland, E.M., Vinet, A., Jacquemet, V., Armour, J.A., & Ardell, J.L. (2013). Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. JOURNAL OF PHYSIOLOGY-LONDON, 591(18), 4515-4533.Wiley. doi: 10.1113/jphysiol.2013.259382.
Kuwabara, Y., Salavatian, S., Howard-Quijano, K., & Mahajan, A. (2022). Chronic Spinal Cord Stimulation Mitigates Cardiac Sympathoexcitation and Reduces Ventricular Arrhythmias Induced by Myocardial Infarction. In CIRCULATION, 146.
Salavatian, S., Wong, B., Fritz, J.R., Kuwabara, Y., Varghese, C.G., Howard-Quijano, K., Armour, A., Foreman, R.D., Ardell, J.L., & Mahajan, A. (2022). Spinal cord stimulation mitigates the myocardial ischemia induced sympathoexcitation by suppressing the spinal neural synchrony and intermediolateral nucleus hyperactivity. In FASEB JOURNAL, 36(S1).Wiley. doi: 10.1096/fasebj.2022.36.S1.R2671.
Waxman, S., Quinn, M., Donahue, C., Salavatian, S., Mahajan, A., Falo, L., Sun, D., & Sigal, I. (2022). Astrocyte Morphology in the Collagenous Lamina Cribrosa Revealed by Multicolor DiOlistic Labeling. In INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 63(7).
Tompkins, J.D., Buckley, U., Salavatian, S., Shivkumar, K., & Ardell, J. (2018). Augmentation of M-Current and Increased Synaptic Efficacy at Intrinsic Cardiac Neurons Contributes to an Enhanced Cardiac Responsiveness to Vagal Nerve Stimulation in the Infarcted Porcine Heart. In FASEB JOURNAL, 32(1).
Salavatian, S., Beaumont, E., Armour, J.A., & Ardell, J.L. (2017). Spinal Dorsal Column and Vagus Nerve Stimulation Modulate Vagal Afferent Transduction of Myocardial Ischemia. In FASEB JOURNAL, 31.
Salavatian, S., Yamaguchi, N., Hamon, D., Fishbein, M.C., Ardell, J.L., Shivkumar, K., & Vaseghi, M. (2017). Myocardial Infarction Causes Both Structural and Functional Remodeling in Cardiac Neurons of the Inferior Vagal (Nodose) Ganglia: Implications for Mechanisms Behind Parasympathetic Withdrawal in Heart Disease. In CIRCULATION, 136.
Yamaguchi, N., Yagishita, D., Salavatian, S., Yoshie, K., Ardell, J.L., Shivkmar, K., & Vaseghi, M. (2017). High Dose Beta-blocker Therapy Does Not Overcome Effects of Prolonged Cardiac Sympathetic Activation. In CIRCULATION, 136.
Salavatian, S., Beaumont, E., Longpre, J.P., Vinet, A., Jacquemet, V., Armour, J.A., & Ardell, J.L. (2014). Vagal Nerve Stimulation Mitigates Atrial Fibrillation by Attenuating the Intrinsic Cardiac Local Circuit Neuronal Activity. In CIRCULATION, 130.
Beaumont, E., Armour, J.A., Salavatian, S., Vinet, A., Jacquemet, V., & Ardell, J.L. (2013). Vagal Nerve Stimulation Modifies Intrinsic Cardiac Local Circuit Neurons in the Suppression of Atrial Arrhythmias. In CIRCULATION, 128(22).
Beaumont, E., Armour, J.A., Salavatian, S., Vinet, A., Jacquemet, V., & Ardell, J.L. (2013). Network interactions within the intrinsic cardiac nervous system: Implications for reflex control of regional cardiac function. In FASEB JOURNAL, 27.
Moharreri, S., Rezaei, S., & Salavatian, S. (2013). Discrimination of heart arrhythmias using novel features in heart rate phase space. In Computing in Cardiology, 40, (pp. 1035-1038).
Rezaei, S., Moharreri, S., Ajorloo, H., & Salavatian, S. (2013). Implementation of heart rate variability signal processing into FPGA: System on-chip design. In Computing in Cardiology, 40, (pp. 397-400).
Salavatian, S., Vinet, A., Beaumont, E., Armour, J.A., Ardell, J.L., & Jacquemet, V. (2013). Recording and identification of cardiac neuron activity in the right atrium ganglionated plexus. In Computing in Cardiology, 40, (pp. 1191-1194).