Kevin Bell

Assistant Professor
Research Assistant Professor
Bioengineering Department


Dr. Bell is a research assistant professor in the Department of Orthopaedic Surgery and Bioengineering serving as the Director of Biomechanics at the Ferguson Research Laboratory. His research interests focus on development of advanced human movement sensors and the application of robotic technology towards the assessment of joint function throughout the musculoskeletal system. Specifically, clinical and laboratory-based experimentation focuses on assessing the effects of joint injury, repair and rehabilitation to promote more effective clinical treatments and improved clinical outcomes. Novel experimental techniques including robotic testing system, virtual reality assisted motion tracking, and wireless joint function assessment are utilized to answer clinically relevant research questions. Recent projects have focused on improved compressive loading methodologies for cervical spine flexibility testing, development of a clinically motivated scoliosis testing platform, and validation of a wearable joint rehabilitation system.


(2018) Innovative Institute - Pitt Innovator Award.

(2018) Pittsburgh Innovation Challenge - Poster Award.

(2017) German Knee Society (DKG) - Best Poster Award.

(2016) Orthopaedic Research Society (ORS) - New Investigator Research Award.

BS, Mathematics, Westminster College, 1997 - 2002

BS, Bioengineering, University of Pittsburgh, 2000 - 2002

MS, Mechanical Engineering, University of Pittsburgh, 2004 - 2006

PhD, Bioengineering, University of Pittsburgh, 2008 - 2013

Tisherman, R., Hartman, R., Hariharan, K., Vaudreuil, N., Sowa, G., Schneider, M., Timko, M., & Bell, K. (2020). Biomechanical contribution of the alar ligaments to upper cervical stability. JOURNAL OF BIOMECHANICS, 99, 109508.Elsevier BV. doi: 10.1016/j.jbiomech.2019.109508.

Bell, K.M., Debski, R.E., Sowa, G.A., Kang, J.D., & Tashman, S. (2019). Optimization of compressive loading parameters to mimic in vivo cervical spine kinematics in vitro. JOURNAL OF BIOMECHANICS, 87, 107-113.Elsevier BV. doi: 10.1016/j.jbiomech.2019.02.022.

Bell, K.M., Onyeukwu, C., McClincy, M.P., Allen, M., Bechard, L., Mukherjee, A., Hartman, R.A., Smith, C., Lynch, A.D., & Irrgang, J.J. (2019). Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee. SENSORS, 19(5), 1021.MDPI AG. doi: 10.3390/s19051021.

Guenther, D., Sexton, S.L., Bell, K.M., Irarrazaval, S., Fu, F.H., Musahl, V., & Debski, R.E. (2019). Non-uniform strain distribution in anterolateral capsule of knee: Implications for surgical repair. JOURNAL OF ORTHOPAEDIC RESEARCH, 37(5), 1025-1032.Wiley. doi: 10.1002/jor.24270.

Ouyang, Z., Wang, W., Vaudreuil, N., Tisherman, R., Yan, Y., Bosch, P., Kang, J., & Bell, K. (2019). Biomechanical Analysis of a Growing Rod with Sliding Pedicle Screw System for Early-Onset Scoliosis. J Healthc Eng, 2019, 9535070.Hindawi Limited. doi: 10.1155/2019/9535070.

Rynearson, B., Ramanathan, R., Allen, M., Wang, X., Vaudreuil, N., Bell, K.M., & Bosch, P. (2019). Biomechanical Analysis of Wide Posterior Releases Compared With Inferior Facetectomy and Discectomy in the Thoracolumbar and Lumbar Spine. Spine Deform, 7(3), 404-409.Springer Science and Business Media LLC. doi: 10.1016/j.jspd.2018.09.004.

Tisherman, R., Vaudreuil, N., Ramanathan, R., Hartman, R., Lee, J., & Bell, K. (2019). Biomechanical contributions of upper cervical ligamentous structures in Type II odontoid fractures. J Biomech, 83, 28-33.Elsevier BV. doi: 10.1016/j.jbiomech.2018.11.014.

Vaudreuil, N., Xue, J., Bell, K., & Dede, O. (2019). Biomechanical analysis of pedicle screw density in posterior spine instrumentation. Current Orthopaedic Practice, 30(4), 312-317.Ovid Technologies (Wolters Kluwer Health). doi: 10.1097/bco.0000000000000778.

Bell, K.M., Oh, A., Cook, H.A., Yan, Y., & Lee, J.Y. (2018). Adaptation of a clinical fixation device for biomechanical testing of the lumbar spine. JOURNAL OF BIOMECHANICS, 69, 164-168.Elsevier BV. doi: 10.1016/j.jbiomech.2017.12.029.

Bell, K.M., Rahnemai-Azar, A.A., Irarrazaval, S., Guenther, D., Fu, F.H., Musahl, V., & Debski, R.E. (2018). In situ force in the anterior cruciate ligament, the lateral collateral ligament, and the anterolateral capsule complex during a simulated pivot shift test. JOURNAL OF ORTHOPAEDIC RESEARCH, 36(3), 847-853.Wiley. doi: 10.1002/jor.23676.

Bell, K.M., Yan, Y., Hartman, R.A., & Lee, J.Y. (2018). Influence of follower load application on moment-rotation parameters and intradiscal pressure in the cervical spine. JOURNAL OF BIOMECHANICS, 76, 167-172.Elsevier BV. doi: 10.1016/j.jbiomech.2018.05.031.

Vaudreuil, N., Xue, J., Ramanathan, R., Tisherman, R., Dombrowski, M., Wang, W.J., & Bell, K. (2018). Novel use of telescoping growth rods in treatment of early onset scoliosis: An in vivo and in vitro study in a porcine model. JOR Spine, 1(4), e1035.Wiley. doi: 10.1002/jsp2.1035.

Guenther, D., Irarrazaval, S., Bell, K.M., Rahnemai-Azar, A.A., Fu, F.H., Debski, R.E., & Musahl, V. (2017). The Role of Extra-Articular Tenodesis in Combined ACL and Anterolateral Capsular Injury. JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 99(19), 1654-1660.Ovid Technologies (Wolters Kluwer Health). doi: 10.2106/JBJS.16.01462.

Guenther, D., Rahnemai-Azar, A.A., Bell, K.M., Irarrazaval, S., Fu, F.H., Musahl, V., & Debski, R.E. (2017). The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue. AMERICAN JOURNAL OF SPORTS MEDICINE, 45(4), 849-855.SAGE Publications. doi: 10.1177/0363546516674477.

Rahnemai-Azar, A.A., Arilla, F.V., Bell, K.M., Fu, F.H., Musahl, V., & Debski, R.E. (2017). Biomechanical evaluation of knee endpoint during anterior tibial loading: Implication for physical exams. KNEE, 24(2), 258-263.Elsevier BV. doi: 10.1016/j.knee.2016.11.015.

Russo, F., Hartman, R.A., Bell, K.M., Vo, N., Sowa, G.A., Kang, J.D., Vadala, G., & Denaro, V. (2017). Biomechanical Evaluation of Transpedicular Nucleotomy With Intact Annulus Fibrosus. SPINE, 42(4), E193-E201.Ovid Technologies (Wolters Kluwer Health). doi: 10.1097/BRS.0000000000001762.

Yan, Y., Bell, K.M., Hartman, R.A., Hu, J., Wang, W., Kang, J.D., & Lee, J.Y. (2017). In vitro evaluation of translating and rotating plates using a robot testing system under follower load. EUROPEAN SPINE JOURNAL, 26(1), 189-199.Springer Science and Business Media LLC. doi: 10.1007/s00586-015-4203-8.

Bell, K.M., Yan, Y., Debski, R.E., Sowa, G.A., Kang, J.D., & Tashman, S. (2016). Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine. JOURNAL OF BIOMECHANICS, 49(2), 167-172.Elsevier BV. doi: 10.1016/j.jbiomech.2015.11.045.

Hartman, R.A., Tisherman, R.E., Wang, C., Bell, K.M., Lee, J.Y., Sowa, G.A., & Kang, J.D. (2016). Mechanical role of the posterior column components in the cervical spine. EUROPEAN SPINE JOURNAL, 25(7), 2129-2138.Springer Science and Business Media LLC. doi: 10.1007/s00586-016-4541-1.

Russo, F., Hartman, R.A., Bell, K.M., Vo, N., Sowa, G.A., Kang, J.D., VadalĂ , G., & Denaro, V. (2016). Biomechanical Evaluation of Transpedicular Nucleotomy with Intact Annulus Fibrosus. Spine (Phila Pa 1976). doi: 10.1097/BRS.0000000000001762.

Bell, K.M., Arilla, F.V., Rahnemai-Azar, A.A., Fu, F.H., Musahl, V., & Debski, R.E. (2015). Novel technique for evaluation of knee function continuously through the range of flexion. JOURNAL OF BIOMECHANICS, 48(13), 3728-3731.Elsevier BV. doi: 10.1016/j.jbiomech.2015.08.019.

Hartman, R.A., Bell, K.M., Quan, B., Nuzhao, Y., Sowa, G.A., & Kang, J.D. (2015). Needle Puncture in Rabbit Functional Spinal Units Alters Rotational Biomechanics. JOURNAL OF SPINAL DISORDERS & TECHNIQUES, 28(3), E146-E153.Ovid Technologies (Wolters Kluwer Health). doi: 10.1097/BSD.0000000000000196.

Bell, K.M., Hartman, R.A., Gilbertson, L.G., & Kang, J.D. (2013). In vitro spine testing using a robot-based testing system: Comparison of displacement control and "hybrid control". JOURNAL OF BIOMECHANICS, 46(10), 1663-1669.Elsevier BV. doi: 10.1016/j.jbiomech.2013.04.007.

Leckie, S.K., Sowa, G.A., Bechara, B.P., Hartman, R.A., Coelho, J.P., Witt, W.T., Dong, Q.D., Bowman, B.W., Bell, K.M., Vo, N.V., Kramer, B.C., & Kang, J.D. (2013). Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. SPINE JOURNAL, 13(3), 263-272.Elsevier BV. doi: 10.1016/j.spinee.2012.12.004.

Bechara, B.P., Bell, K.M., Hartman, R.A., Lee, J.Y., Kang, J.D., & Donaldson, W.F. (2012). In Vivo Analysis of Cervical Range of Motion After 4-and 5-level Subaxial Cervical Spine Fusion. SPINE, 37(1), E23-E29.Ovid Technologies (Wolters Kluwer Health). doi: 10.1097/BRS.0b013e31821c3275.

Hartman, R.A., Bell, K.M., Debski, R.E., Kang, J.D., & Sowa, G.A. (2012). Novel ex-vivo mechanobiological intervertebral disc culture system. JOURNAL OF BIOMECHANICS, 45(2), 382-385.Elsevier BV. doi: 10.1016/j.jbiomech.2011.10.036.

Leckie, S.K., Bechara, B.P., Hartman, R.A., Sowa, G.A., Woods, B.I., Coelho, J.P., Witt, W.T., Dong, Q.D., Bowman, B.W., Bell, K.M., Vo, N.V., Wang, B., & Kang, J.D. (2012). Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an in vivo rabbit model. SPINE JOURNAL, 12(1), 7-20.Elsevier BV. doi: 10.1016/j.spinee.2011.09.011.

Bell, K.M., Bechara, B.P., Hartman, R.A., Shively, C., Frazier, E.C., Lee, J.Y., Kang, J.D., & Donaldson, W.F. (2011). Influence of Number of Operated Levels and Postoperative Time on Active Range of Motion Following Anterior Cervical Decompression and Fusion Procedures. SPINE, 36(4), 263-268.Ovid Technologies (Wolters Kluwer Health). doi: 10.1097/BRS.0b013e3181ccc552.

Sowa, G.A., Coelho, J.P., Bell, K.M., Zorn, A.S., Vo, N.V., Smolinski, P., Niyonkuru, C., Hartman, R., Studer, R.K., & Kang, J.D. (2011). Alterations in gene expression in response to compression of nucleus pulposus cells. SPINE JOURNAL, 11(1), 36-43.Elsevier BV. doi: 10.1016/j.spinee.2010.09.019.

Agosti, C.D., Bell, K.M., Plazek, D.J., Larson, J., Kang, J.D., Gilbertson, L.G., & Smolinski, P. (2010). Analysis of power law models for the creep of nucleus pulposus tissue. BIORHEOLOGY, 47(2), 143-151.IOS Press. doi: 10.3233/BIR-2010-0564.

Bell, K.M., Frazier, E.C., Shively, C.M., Hartman, R.A., Ulibarri, J.C., Lee, J.Y., Kang, J.D., & III, D.W.F. (2009). Assessing range of motion to evaluate the adverse effects of ill-fitting cervical orthoses. SPINE JOURNAL, 9(3), 225-231.Elsevier BV. doi: 10.1016/j.spinee.2008.03.010.

Tsai, A.G., Musahl, V., Steckel, H., Bell, K.M., Zantop, T., Irrgang, J.J., & Fu, F.H. (2008). Rotational knee laxity: Reliability of a simple measurement device in vivo. BMC MUSCULOSKELETAL DISORDERS, 9(1), 35.Springer Science and Business Media LLC. doi: 10.1186/1471-2474-9-35.

Zantop, T., Ferretti, M., Bell, K.M., Brucker, P.U., Gilbertson, L., & Fu, F.H. (2008). Effect of Tunnel-Graft Length on the Biomechanics of Anterior Cruciate Ligament-Reconstructed Knees Intra-articular Study in a Goat Model. AMERICAN JOURNAL OF SPORTS MEDICINE, 36(11), 2158-2166.SAGE Publications. doi: 10.1177/0363546508320572.

Musahl, V., Bell, K.M., Tsai, A.G., Costic, R.S., Allaire, R., Zantop, T., Irrgang, J.J., & Fu, F.H. (2007). Development of a simple device for measurement of rotational knee laxity. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 15(8), 1009-1012.Springer Science and Business Media LLC. doi: 10.1007/s00167-007-0317-9.