headshot of Daniel Shiwarski

Daniel Shiwarski

Assistant Professor
Bioengineering Department

overview

Dr. Shiwarski obtained a combined undergraduate degree from Bucknell University in cell biology and biochemistry, a Ph.D. in Biological Sciences and Neuroscience from Carnegie Mellon University and the Center for Neural Basis of Cognition, and completed a Postdoctoral fellowship in Biomedical Engineering at Carnegie Mellon University in cellular biomechanics and tissue engineering. Dr. Shiwarski has a broad background in cell biology, cancer research, and tissue engineering with specific expertise in G-protein coupled receptor trafficking, quantitative cellular biomechanics, physiology of bimolecular condensates and phase separation, advanced fluorescence imaging, 3D bioprinting, and computational image analysis. Dr. Shiwarski’s doctoral research at Carnegie Mellon University was focused on investigating how opioid receptor membrane trafficking events influence pain inhibition and opioid addiction using advanced live cell fluorescence imaging techniques to track exocytic and endocytic events. During his postdoctoral research fellowship in Dr. Adam Feinberg’s lab Dr. Shiwarski worked on three distinct projects i) development of a fluorescence-based strain biosensor to track real-time microscopic changes in cell and tissue biomechanics, ii) co-development of a novel tissue engineering platform, FRESH, that lead to 3D bioprinting of unmodified collagen into functional components of the human heart and the development of collagen-based tissue microfluidics, and iii) the generation of opensource hardware and software for tissue engineering and cellular biomechanics evaluation.

about

Shiwarski, D.J., Hudson, A.R., Tashman, J.W., Bakirci, E., Moss, S., Coffin, B.D., & Feinberg, A.W. (2024). 3D Bioprinting of Collagen-based Microfluidics for Engineering Fully-biologic Tissue Systems. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2024.01.26.577422.

Lee, I., Surendran, A., Fleury, S., Gimino, I., Curtiss, A., Fell, C., Shiwarski, D.J., Refy, O., Rothrock, B., Jo, S., Schwartzkopff, T., Mehta, A.S., Wang, Y., Sipe, A., John, S., Ji, X., Nikiforidis, G., Feinberg, A.W., Hester, J., Weber, D.J., Veiseh, O., Rivnay, J., & Cohen-Karni, T. (2023). Electrocatalytic on-site oxygenation for transplanted cell-based-therapies. Nat Commun, 14(1), 7019.Springer Science and Business Media LLC. doi: 10.1038/s41467-023-42697-2.

Stang, M., Tashman, J., Shiwarski, D., Yang, H., Yao, L., & Feinberg, A. (2023). Embedded 3D Printing of Thermally-Cured Thermoset Elastomers and the Interdependence of Rheology and Machine Pathing. ADVANCED MATERIALS TECHNOLOGIES, 8(3).Wiley. doi: 10.1002/admt.202200984.

Tashman, J.W., Shiwarski, D.J., Coffin, B., Ruesch, A., Lanni, F., Kainerstorfer, J.M., & Feinberg, A.W. (2023). In situ volumetric imaging and analysis of FRESH 3D bioprinted constructs using optical coherence tomography. BIOFABRICATION, 15(1), 014102.IOP Publishing. doi: 10.1088/1758-5090/ac975e.

Behre, A., Tashman, J.W., Dikyol, C., Shiwarski, D.J., Crum, R.J., Johnson, S.A., Kommeri, R., Hussey, G.S., Badylak, S.F., & Feinberg, A.W. (2022). 3D Bioprinted Patient-Specific Extracellular Matrix Scaffolds for Soft Tissue Defects. ADVANCED HEALTHCARE MATERIALS, 11(24), e2200866.Wiley. doi: 10.1002/adhm.202200866.

Bliley, J., Tashman, J., Stang, M., Coffin, B., Shiwarski, D., Lee, A., Hinton, T., & Feinberg, A. (2022). FRESH 3D bioprinting a contractile heart tube using human stem cell-derived cardiomyocytes. BIOFABRICATION, 14(2), 024106.IOP Publishing. doi: 10.1088/1758-5090/ac58be.

Bliley, J.M., Shiwarski, D.J., & Feinberg, A.W. (2022). 3D-bioprinted human tissue and the path toward clinical translation. SCIENCE TRANSLATIONAL MEDICINE, 14(666), eabo7047.American Association for the Advancement of Science (AAAS). doi: 10.1126/scitranslmed.abo7047.

Boyd-Shiwarski, C.R., Shiwarski, D.J., Griffiths, S.E., Beacham, R.T., Norrell, L., Morrison, D.E., Wang, J., Mann, J., Tennant, W., Anderson, E.N., Franks, J., Calderon, M., Connolly, K.A., Cheema, M.U., Weaver, C.J., Nkashama, L.J., Weckerly, C.C., Querry, K.E., Pandey, U.B., Donnelly, C.J., Sun, D., Rodan, A.R., & Subramanya, A.R. (2022). WNK kinases sense molecular crowding and rescue cell volume via phase separation. CELL, 185(24), 4488-+.Elsevier BV. doi: 10.1016/j.cell.2022.09.042.

Dosunmu-Ogunbi, A., Yuan, S., Shiwarski, D.J., Tashman, J.W., Reynolds, M., Feinberg, A., Novelli, E.M., Shiva, S., & Straub, A.C. (2022). Endothelial superoxide dismutase 2 is decreased in sickle cell disease and regulates fibronectin processing. Function (Oxf), 3(2), zqac005.Oxford University Press (OUP). doi: 10.1093/function/zqac005.

Sun, W., Tashman, J.W., Shiwarski, D.J., Feinberg, A.W., & Webster-Wood, V.A. (2022). Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement. ACS BIOMATERIALS SCIENCE & ENGINEERING, 8(1), 303-313.American Chemical Society (ACS). doi: 10.1021/acsbiomaterials.1c00908.

Tashman, J.W., Shiwarski, D.J., & Feinberg, A.W. (2022). Development of a high-performance open-source 3D bioprinter. SCIENTIFIC REPORTS, 12(1), 22652.Springer Science and Business Media LLC. doi: 10.1038/s41598-022-26809-4.

Bliley, J.M., Vermeer, M.C.S.C., Duffy, R.M., Batalov, I., Kramer, D., Tashman, J.W., Shiwarski, D.J., Lee, A., Teplenin, A.S., Volkers, L., Coffin, B., Hoes, M.F., Kalmykov, A., Palchesko, R.N., Sun, Y., Jongbloed, J.D.H., Bomer, N., de Boer, R.A., Suurmeijer, A.J.H., Pijnappels, D.A., Bolling, M.C., van der Meer, P., & Feinberg, A.W. (2021). Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. SCIENCE TRANSLATIONAL MEDICINE, 13(603).American Association for the Advancement of Science (AAAS). doi: 10.1126/scitranslmed.abd1817.

Hull, S.M., Lindsay, C.D., Brunel, L.G., Shiwarski, D.J., Tashman, J.W., Roth, J.G., Myung, D., Feinberg, A.W., & Heilshorn, S.C. (2021). 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. ADVANCED FUNCTIONAL MATERIALS, 31(7).Wiley. doi: 10.1002/adfm.202007983.

Shiwarski, D. (2021). Utility of perfusion decellularization to achieve biochemical and mechanically accurate whole animal and organ-specific tissue scaffolds. Physiol Rep, 9(6), e14804.Wiley. doi: 10.14814/phy2.14804.

Shiwarski, D.J., Hudson, A.R., Tashman, J.W., & Feinberg, A.W. (2021). Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL BIOENGINEERING, 5(1), 010904.AIP Publishing. doi: 10.1063/5.0032777.

Tashman, J.W., Shiwarski, D.J., & Feinberg, A.W. (2021). A high performance open-source syringe extruder optimized for extrusion and retraction during FRESH 3D bioprinting. HardwareX, 9, e00170.Elsevier BV. doi: 10.1016/j.ohx.2020.e00170.

Boyd-Shiwarski, C.R., Weaver, C.J., Beacham, R.T., Shiwarski, D.J., Connolly, K.A., Nkashama, L.J., Mutchler, S.M., Griffiths, S.E., Knoell, S.A., Sebastiani, R.S., Ray, E.C., Marciszyn, A.L., & Subramanya, A.R. (2020). Effects of extreme potassium stress on blood pressure and renal tubular sodium transport. AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 318(6), F1341-F1356.American Physiological Society. doi: 10.1152/ajprenal.00527.2019.

Cheng, Y.W., Shiwarski, D.J., Ball, R.L., Whitehead, K.A., & Feinberg, A.W. (2020). Engineering Aligned Skeletal Muscle Tissue Using Decellularized Plant-Derived Scaffolds. ACS BIOMATERIALS SCIENCE & ENGINEERING, 6(5), 3046-3054.American Chemical Society (ACS). doi: 10.1021/acsbiomaterials.0c00058.

Mirdamadi, E., Tashman, J.W., Shiwarski, D.J., Palchesko, R.N., & Feinberg, A.W. (2020). FRESH 3D Bioprinting a Full-Size Model of the Human Heart. ACS BIOMATERIALS SCIENCE & ENGINEERING, 6(11), 6453-6459.American Chemical Society (ACS). doi: 10.1021/acsbiomaterials.0c01133.

Shiwarski, D.J., Tashman, J.W., Eaton, A.F., Apodaca, G., & Feinberg, A.W. (2020). 3D printed biaxial stretcher compatible with live fluorescence microscopy. HardwareX, 7, e00095.Elsevier BV. doi: 10.1016/j.ohx.2020.e00095.

Shiwarski, D.J., Tashman, J.W., Tsamis, A., Bliley, J.M., Blundon, M.A., Aranda-Michel, E., Jallerat, Q., Szymanski, J.M., McCartney, B.M., & Feinberg, A.W. (2020). Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. NATURE COMMUNICATIONS, 11(1), 5883.Springer Science and Business Media LLC. doi: 10.1038/s41467-020-19659-z.

Kalmykov, A., Huang, C., Bliley, J., Shiwarski, D., Tashman, J., Abdullah, A., Rastogi, S.K., Shukla, S., Mataev, E., Feinberg, A.W., Hsia, K.J., & Cohen-Karni, T. (2019). Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. SCIENCE ADVANCES, 5(8), eaax0729.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aax0729.

Lee, A., Hudson, A.R., Shiwarski, D.J., Tashman, J.W., Hinton, T.J., Yerneni, S., Bliley, J.M., Campbell, P.G., & Feinberg, A.W. (2019). 3D bioprinting of collagen to rebuild components of the human heart. SCIENCE, 365(6452), 482-+.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.aav9051.

Shiwarski, D.J., Crilly, S.E., Dates, A., & Puthenveedu, M.A. (2019). Dual RXR motifs regulate nerve growth factor-mediated intracellular retention of the delta opioid receptor. MOLECULAR BIOLOGY OF THE CELL, 30(5), 680-690.American Society for Cell Biology (ASCB). doi: 10.1091/mbc.E18-05-0292.

Boyd-Shiwarski, C.R., Shiwarski, D.J., Roy, A., Namboodiri, H.N., Nkashama, L.J., Xie, J., McClain, K.L., Marciszyn, A., Kleyman, T.R., Tan, R.J., Stolz, D.B., Puthenveedu, M.A., Huang, C.L., & Subramanya, A.R. (2018). Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. MOLECULAR BIOLOGY OF THE CELL, 29(4), 499-509.American Society for Cell Biology (ASCB). doi: 10.1091/mbc.E17-08-0529.

Rastogi, S.K., Bliley, J., Shiwarski, D.J., Raghavan, G., Feinberg, A.W., & Cohen-Karni, T. (2018). Graphene Microelectrode Arrays for Electrical and Optical Measurements of Human Stem Cell-Derived Cardiomyocytes. CELLULAR AND MOLECULAR BIOENGINEERING, 11(5), 407-418.Springer Science and Business Media LLC. doi: 10.1007/s12195-018-0525-z.

Godse, N.R., Khan, N., Yochum, Z.A., Gomez-Casal, R., Kemp, C., Shiwarski, D.J., Seethala, R.S., Kulich, S., Seshadri, M., Burns, T.F., & Duvvuri, U. (2017). TMEM16A/ANO1 Inhibits Apoptosis Via Downregulation of Bim Expression. CLINICAL CANCER RESEARCH, 23(23), 7324-7332.American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.CCR-17-1561.

Shiwarski, D.J., Darr, M., Telmer, C.A., Bruchez, M.P., & Puthenveedu, M.A. (2017). PI3K class II α regulates δ-opioid receptor export from the trans-Golgi network. MOLECULAR BIOLOGY OF THE CELL, 28(16), 2202-2219.American Society for Cell Biology (ASCB). doi: 10.1091/mbc.E17-01-0030.

Shiwarski, D.J., Tipton, A., Giraldo, M.D., Schmidt, B.F., Gold, M.S., Pradhan, A.A., & Puthenveedu, M.A. (2017). A PTEN-Regulated Checkpoint Controls Surface Delivery of δ Opioid Receptors. JOURNAL OF NEUROSCIENCE, 37(14), 3741-3752.Society for Neuroscience. doi: 10.1523/JNEUROSCI.2923-16.2017.

Weinberg, Z.Y., Zajac, A.S., Phan, T., Shiwarski, D.J., & Puthenveedu, M.A. (2017). Sequence-Specific Regulation of Endocytic Lifetimes Modulates Arrestin-Mediated Signaling at the μ Opioid Receptor. MOLECULAR PHARMACOLOGY, 91(4), 416-U216.American Society for Pharmacology & Experimental Therapeutics (ASPET). doi: 10.1124/mol.116.106633.

Bowman, S.L., Shiwarski, D.J., & Puthenveedu, M.A. (2016). Distinct G protein-coupled receptor recycling pathways allow spatial control of downstream G protein signaling. JOURNAL OF CELL BIOLOGY, 214(7), 797-806.Rockefeller University Press. doi: 10.1083/jcb.201512068.

Bowman, S.L., Soohoo, A.L., Shiwarski, D.J., Schulz, S., Pradhan, A.A., & Puthenveedu, M.A. (2015). Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P. CELL REPORTS, 10(11), 1925-1936.Elsevier BV. doi: 10.1016/j.celrep.2015.02.045.

Shiwarski, D.J., Shao, C., Bill, A., Kim, J., Xiao, D., Bertrand, C.A., Seethala, R.S., Sano, D., Myers, J.N., Ha, P., Grandis, J., Gaither, L.A., Puthenveedu, M.A., & Duvvuri, U. (2014). To "Grow" or "Go": TMEM16A Expression as a Switch between Tumor Growth and Metastasis in SCCHN. CLINICAL CANCER RESEARCH, 20(17), 4673-4688.American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.CCR-14-0363.

Van, P.T., Bass, V., Shiwarski, D., Lanni, F., & Minden, J. (2014). High dynamic range proteome imaging with the structured illumination gel imager. ELECTROPHORESIS, 35(18), 2642-2655.Wiley. doi: 10.1002/elps.201400126.

Chenevert, J., Duvvuri, U., Chiosea, S., Dacic, S., Cieply, K., Kim, J., Shiwarski, D., & Seethala, R.R. (2012). DOG1: a novel marker of salivary acinar and intercalated duct differentiation. MODERN PATHOLOGY, 25(7), 919-929.Elsevier BV. doi: 10.1038/modpathol.2012.57.

Duvvuri, U., Shiwarski, D.J., Xiao, D., Bertrand, C., Huang, X., Edinger, R.S., Rock, J.R., Harfe, B.D., Henson, B.J., Kunzelmann, K., Schreiber, R., Seethala, R.S., Egloff, A.M., Chen, X., Lui, V.W., Grandis, J.R., & Gollin, S.M. (2012). TMEM16A Induces MAPK and Contributes Directly to Tumorigenesis and Cancer Progression. CANCER RESEARCH, 72(13), 3270-3281.American Association for Cancer Research (AACR). doi: 10.1158/0008-5472.CAN-12-0475-T.

Boyd-Shiwarski, C.R., Beacham, R.T., Griffiths, S.E., Shiwarski, D.J., Knoell, S.A., Nkashama, L.J., Querry, K., Marciszyn, A.L., Huang, C.L., Stocker, S.D., & Subramanya, A.R. Kidney-Specific WNK1 Amplifies NCC Responsiveness to Potassium Imbalance. Cold Spring Harbor Laboratory. doi: 10.1101/2021.03.12.435046.

Boyd-Shiwarski, C.R., Shiwarski, D.J., Griffiths, S.E., Beacham, R.T., Norrell, L., Morrison, D.E., Wang, J., Mann, J., Tennant, W., Anderson, E.N., Franks, J., Calderon, M., Connolly, K.A., Weaver, C.J., Weckerly, C.C., Pandey, U.B., Donnelly, C.J., Sun, D., Rodan, A.R., & Subramanya, A.R. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cold Spring Harbor Laboratory. doi: 10.1101/2022.01.10.475707.

Lee, I., Surendran, A., Fleury, S., Gimino, I., Curtis, A., Fell, C., Shiwarski, D., El-Refy, O., Rothrock, B., Jo, S., Schwartzkopff, T., Mehta, A., John, S., Ji, X., Nikiforidis, G., Feinberg, A., Hester, J., Weber, D., Veiseh, O., Rivnay, J., & Cohen-Karni, T. Electrocatalytic on-site oxygenation for transplanted cell-based-therapies. Research Square Platform LLC. doi: 10.21203/rs.3.rs-3026789/v1.

Palchesko, R.N., Du, Y., Geary, M.L., Carrasquilla, S., Shiwarski, D.J., Khandaker, I., Funderburgh, J.L., & Feinberg, A.W. In vivo engraftment into the cornea endothelium using extracellular matrix shrink-wrapped cells. Communications Materials, 3(1).Springer Science and Business Media LLC. doi: 10.1038/s43246-022-00247-1.

Shiwarski, D.J., Tashman, J.W., Tsamis, A., Bliley, J.M., Blundon, M.A., Aranda-Michel, E., Jallerat, Q., Szymanski, J.M., McCartney, B.M., & Feinberg, A.W. Fibronectin-Based Nanomechanical Biosensors to Map 3D Strains in Live Cells and Tissues. Cold Spring Harbor Laboratory. doi: 10.1101/2020.02.11.943696.

Shiwarski, D.J., Tashman, J.W., Tsamis, A., Bliley, J.M., Blundon, M.A., Aranda-Michel, E., Jallerat, Q., Szymanski, J.M., McCartney, B.M., & Feinberg, A.W. Fabrication of Nanomechanical Biosensors to Map 3D Surface Strain in Live Cells and Tissue. Research Square Platform LLC. doi: 10.21203/rs.3.pex-1169/v1.

Tashman, J.W., Shiwarski, D.J., & Feinberg, A.W. Development of a High-Performance Open-Source 3D Bioprinter. Cold Spring Harbor Laboratory. doi: 10.1101/2022.09.11.507416.

Tashman, J.W., Shiwarski, D.J., Ruesch, A., Lanni, F., Kainerstorfer, J.M., & Feinberg, A.W. In Situ Volumetric Imaging and Analysis of FRESH 3D Bioprinted Constructs Using Optical Coherence Tomography. Cold Spring Harbor Laboratory. doi: 10.1101/2021.06.30.450389.

Behre, A., Tashman, J., Dikyol, C., Shiwarski, D.J., Johnson, S., Crum, R.J., Hussey, G., Badylak, S.F., & Feinberg, A.W. (2022). Fresh 3d Bioprinted Patient-specific Extracellular Matrix Hydrogel Patches For Volumetric Muscle Loss. In TISSUE ENGINEERING PART A, 28, (pp. 320-321).

Shiwarski, D.J., Hudson, A., Tashman, J., Straub, A., & Feinberg, A. (2022). FRESH 3D Bioprinted Collagen-based Resistance Vessels and Multiscale Vascular Microfluidics. In FASEB JOURNAL, 36(S1).Wiley. doi: 10.1096/fasebj.2022.36.S1.R6022.

Boyd-Shiwarski, C., Shiwarski, D., Weaver, C., Beacham, R., Griffiths, S., & Subramanya, A. (2020). WNK1 Regulates Cell Volume via Crowding-Induced Phase Transitions. In FASEB JOURNAL, 34(S1), (p. 1).Wiley. doi: 10.1096/fasebj.2020.34.s1.07012.

Boyd-Shiwarski, C.R., Shiwarski, D.J., Nkashama, L.J., Roy, A., Stolz, D.B., Puthenveedu, M., & Subramanya, A.R. (2017). A Cysteine-Rich Hydrophobic Motif in KS-WNK1 Regulates WNK Body Formation. In FASEB JOURNAL, 31.

Bowersox, S.L., Soohoo, A.L., Shiwarski, D.J., & Puthenveedu, M.A. (2013). Neurokinin-1 receptors heterologously regulate post-endocytic recycling of muopioid receptors. In MOLECULAR BIOLOGY OF THE CELL, 24.

Shiwarski, D., Bertrand, C., Egloff, A.M., Huang, X., Seethala, R., Grandis, J., Gollin, S., & Duvvuri, U. (2011). TMEM16A, a novel calcium-activated chloride channel, modulates tumor proliferation via MAPK and Cyclin-D1 signaling. In CANCER RESEARCH, 71(8_Supplement).American Association for Cancer Research (AACR). doi: 10.1158/1538-7445.AM2011-LB-220.

Shiwarski, D.J., He, L.M., Huang, X., Gollin, S., Grandis, J., & Duvvuri, U. (2010). Effects of TMEM16A Expression on Motility and Metastasis in Epithelial Tumor Cells. In FASEB JOURNAL, 24.