headshot of Warren Ruder

Warren Ruder

Associate Professor
Bioengineering Department

overview

Over the past fifteen years, the field of synthetic biology has emerged with a focus on reprogramming gene networks and cellular signaling. Simultaneously, exciting technologies have been developed that allow the precise engineering of materials and devices that mimic the cell’s native environment. My research team and I are developing new approaches in synthetic biology and linking these technologies with engineered systems that mimic cell, tissue, and organism physiology. Our efforts include the development of: (1) a living, bacterial microbiome for a biomimetic, robotic host, (2) artificial and engineered living microbiome constituents that deliver nutrients within organ-on-a-chip systems, (3) synthetically engineered cells that control material assembly, and (4) a biomimetic biofilm that combines microfluidics with synthetic biology to enable the discovery and monitoring of spatially segregated phenotypes within cell populations. These systems hold significant promise for both elucidating fundamental principles of physiology while also serving as new technologies for biotechnology and medicine.

about

(2018 - 2023) NIH Director's New Innovator Award.

PhD, Carnegie Mellon University, 2005 - 2009

MS, Carnegie Mellon University, 2005 - 2008

SB, Massachusetts Institute of Technology, 1998 - 2002

Heyde, K.C., Scott, F.Y., Paek, S.H., Zhang, R., & Ruder, W.C. (2017). Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials. J Vis Exp, 2017(121).MyJove. doi: 10.3791/55300.

Lake, J.R., Heyde, K.C., & Ruder, W.C. (2017). Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. In Wanunu, M. (Ed.). PLoS One, 12(4), e0175089.Public Library of Science (PLoS). doi: 10.1371/journal.pone.0175089.

Heyde, K.C., & Ruder, W.C. (2016). A Model of a Synthetic Biological Communication Interface between Mammalian Cells and Mechatronic Systems. IEEE Trans Nanobioscience, 15(8), 864-870.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TNB.2016.2620942.

Heyde, K.C., Gallagher, P.W., & Ruder, W.C. (2016). Bioinspired decision architectures containing host and microbiome processing units. Bioinspir Biomim, 11(5), 056017.IOP Publishing. doi: 10.1088/1748-3190/11/5/056017.

Zhang, R., Heyde, K.C., Scott, F.Y., Paek, S.H., & Ruder, W.C. (2016). Programming Surface Chemistry with Engineered Cells. ACS Synth Biol, 5(9), 936-941.American Chemical Society (ACS). doi: 10.1021/acssynbio.6b00037.

González, L.M., Ruder, W.C., Mitchell, A.P., Messner, W.C., & LeDuc, P.R. (2015). Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain. ISME J, 9(6), 1399-1409.Oxford University Press (OUP). doi: 10.1038/ismej.2014.224.

Heyde, K.C., & Ruder, W.C. (2015). Exploring Host-Microbiome Interactions using an in Silico Model of Biomimetic Robots and Engineered Living Cells. Sci Rep, 5(1), 11988.Springer Nature. doi: 10.1038/srep11988.

González, L.M., Ruder, W.C., Leduc, P.R., & Messner, W.C. (2014). Controlling magnetotactic bacteria through an integrated nanofabricated metallic island and optical microscope approach. Sci Rep, 4(1), 4104.Springer Nature. doi: 10.1038/srep04104.

Rice, M.K., & Ruder, W.C. (2014). Creating biological nanomaterials using synthetic biology. Sci Technol Adv Mater, 15(1), 014401.Taylor & Francis. doi: 10.1088/1468-6996/15/1/014401.

Ruder, W.C., & LeDuc, P.R. (2012). Cells gain traction in 3D. Proc Natl Acad Sci U S A, 109(28), 11060-11061.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1208617109.

Ruder, W.C., Hsu, C.P.D., Edelman, B.D., Schwartz, R., & Leduc, P.R. (2012). Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid. Appl Phys Lett, 101(6), 63701.AIP Publishing. doi: 10.1063/1.4742329.

Ruder, W.C., Pratt, E.D., Bakhru, S., Sitti, M., Zappe, S., Cheng, C.M., Antaki, J.F., & LeDuc, P.R. (2012). Three-dimensional microfiber devices that mimic physiological environments to probe cell mechanics and signaling. Lab Chip, 12(10), 1775-1779.Royal Society of Chemistry (RSC). doi: 10.1039/c2lc21117c.

Ruder, W.C., Pratt, E.D., Brandy, N.Z.D., LaVan, D.A., LeDuc, P.R., & Antaki, J.F. (2012). Calcium signaling is gated by a mechanical threshold in three-dimensional environments. Sci Rep, 2(1), 554.Springer Nature. doi: 10.1038/srep00554.

Ruder, W.C., Lu, T., & Collins, J.J. (2011). Synthetic biology moving into the clinic. Science, 333(6047), 1248-1252.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.1206843.

Kuczenski, B., Ruder, W.C., Messner, W.C., & Leduc, P.R. (2009). Probing cellular dynamics with a chemical signal generator. In Rojas, M. (Ed.). PLoS One, 4(3), e4847.Public Library of Science (PLoS). doi: 10.1371/journal.pone.0004847.

Zhang, Y., Ruder, W.C., & LeDuc, P.R. (2008). Artificial cells: building bioinspired systems using small-scale biology. Trends Biotechnol, 26(1), 14-20.Elsevier. doi: 10.1016/j.tibtech.2007.09.006.

Gerbino, A., Ruder, W.C., Curci, S., Pozzan, T., Zaccolo, M., & Hofer, A.M. (2005). Termination of cAMP signals by Ca2+ and G(alpha)i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations. J Cell Biol, 171(2), 303-312.Rockefeller University Press. doi: 10.1083/jcb.200507054.

Lau, B.W., Colella, M., Ruder, W.C., Ranieri, M., Curci, S., & Hofer, A.M. (2005). Deoxycholic acid activates protein kinase C and phospholipase C via increased Ca2+ entry at plasma membrane. Gastroenterology, 128(3), 695-707.Elsevier. doi: 10.1053/j.gastro.2004.12.046.

Gonzalez, L.M., Tan, C., LeDuc, P.R., Messner, W.C., & Ruder, W.C. (2013). Controlled Envelopment of Magnetic Particles within Liposomes using a Custom-Built Multi-Layer Magnetic Microfluidic Device. In BIOPHYSICAL JOURNAL, 104(2), (p. 546A).Elsevier. doi: 10.1016/j.bpj.2012.11.3024.

Wilson, M.E., Gonzalez, L.M., LeDuc, P.R., & Ruder, W.C. (2013). Exploring the Mechanics of Magnetically Driven Motility in Magnetotactic Bacteria through Genetic Regulation. In BIOPHYSICAL JOURNAL, 104(2), (pp. 640A-641A).Elsevier. doi: 10.1016/j.bpj.2012.11.3538.

González, L.M., Ruder, W.C., Messner, W.C., & LeDuc, P.R. (2012). Sensing of Local, Highly Concentrated Magnetic Field Gradients in Magnetotactic Bacteria Induces Motility Reversal. In ASME 2012 Summer Bioengineering Conference, Parts A and B, (pp. 1297-1298).ASME International. doi: 10.1115/sbc2012-80447.

Gonzalez, L.M., Ruder, W.C., Zenkov, E., LeDuc, P.R., & Messner, W.C. (2012). Integrated Global and Local Field Sensing in Magnetospirillum Magnetotacticum. In BIOPHYSICAL JOURNAL, 102(3), (p. 415A).Elsevier. doi: 10.1016/j.bpj.2011.11.2271.

Wilson, M.E., González, L.M., Ruder, W.C., & LeDuc, P.R. (2012). Engineering Magnetic Nanomaterial Production in Magnetotactic Bacteria Through Gene Regulation. In ASME 2012 Summer Bioengineering Conference, Parts A and B, (pp. 349-350).ASME International. doi: 10.1115/sbc2012-80446.

Wilson, M.E., Ruder, W.C., Zenkov, E., Gonzalez, L.M., & Leduc, P.R. (2012). Magnetically-Induced Genetic Response of Magnetotactic Bacteria. In BIOPHYSICAL JOURNAL, 102(3), (p. 731A).Elsevier. doi: 10.1016/j.bpj.2011.11.3966.

Gonzalez, L.M., Ruder, W.C., Chou, S., Zenkov, E., Messner, W., & LeDuc, P.R. (2011). Imposing Local Magnetic Fields to Control Magnetotactic Bacteria Through Combining Microfabrication and Magnetism. In BIOPHYSICAL JOURNAL, 100(3), (p. 514).

González, L.M., Ruder, W.C., Zenkov, E., LeDuc, P.R., & Messner, W.C. (2011). Controlling Swimming Magnetotactic Bacteria Through Microfabrication Toward a Non-Destructive Biological Sensor. In ASME 2011 Summer Bioengineering Conference, Parts A and B, (PARTS A AND B), (pp. 421-422).ASME International. doi: 10.1115/sbc2011-53336.

Ruder, W.C., Hsu, C.P., Chou, S.Y., Dawson, J.T., Gonzalez, L.M., Antaki, J.F., & LeDuc, P.R. (2010). Micropatterning Biomanufactured Single-Domain Nanoparticles using Self-Assembly to form Artificial Magnetosome Chains. In BIOPHYSICAL JOURNAL, 98(3), (p. 730A).Elsevier. doi: 10.1016/j.bpj.2009.12.4001.

Ruder, W.C., Pratt, E.D., Sitti, M., Leduc, P.R., & Antaki, J.F. (2009). Investigation of calcium mechanotransduction by quasi 3-D microfiber mechanical stimulation of cells. In Proceedings of the ASME Summer Bioengineering Conference, SBC2008, (PART B), (pp. 1049-1050).

Zapanta, C., Ruder, W., Newberg, J., Glass, P., Minhas, D., Osuna, E.G., Sun, L.T., Siefert, A., Shum, J., Taylor, P., Drummond, A., & Chu, B. (2009). An integrated undergraduate biomedical engineering laboratory course. In ASEE Annual Conference and Exposition, Conference Proceedings.

Zapanta, C., Ruder, W., Newberg, J., Glass, P., Minhas, D., Osuna, E.G., Sun, L.T., Siefert, A., Shum, J., Taylor, P., Drummond, A., & Chu, B. (2009). An integrated undergraduate biomedical engineering laboratory course. In ASEE Annual Conference and Exposition, Conference Proceedings.

Ruder, W.C., Pratt, E.D., Brandy, N.Z., LaVan, D.A., LeDuc, P.R., & Antaki, J.F. (2007). Stretch-Activated Calcium Signal Propagation Following Mechanical Stimulation of Focal Adhesions. In ASME 2007 Summer Bioengineering Conference, (pp. 271-272).ASME International. doi: 10.1115/sbc2007-176431.

Research interests

2nd-Messenger Signaling
Biomaterials
Microbiome and the Gut-Brain-Axis
Synthetic Biology
Synthetic Mammalian Signaling...