headshot of James Herman

James Herman

Assistant Professor
Herman Lab

overview

Humans and other primates display unparalleled flexibility in their use of visual information. The meaning of images depends, malleably, on our internal goals. Selection of visual stimuli ("Attention") is a canonical way that we flexibly interpret visual input - attended stimuli are used to guide thoughts and actions while ignored ones are often excluded from perception entirely. But the nature of stimulus encoding in the primate visual system - a distributed representation across feature selective visual cortical subregions - prevents the assignment of meaning to images from being "hardwired". Instead, internal-state-dependent meanings must be learned through experience. What are the neuronal mechanisms that support the learning of meaning? What are the limits on how visual information can be decoded? I am curious about all the ways that the primate brain makes use of visual information.

about

BA (Physics and Mathematics), University of California, Berkeley, 1997 - 2003

PhD (Biology / Neuroscience), City University of New York, 2004 - 2012

Wang, L., Herman, J.P., & Krauzlis, R.J. (2022). Neuronal modulation in the mouse superior colliculus during covert visual selective attention. Sci Rep, 12(1), 2482.Springer Nature. doi: 10.1038/s41598-022-06410-5.

Yu, G., Herman, J.P., Katz, L.N., & Krauzlis, R.J. (2022). Microsaccades as a marker not a cause for attention-related modulation. Elife, 11, e74168.eLife. doi: 10.7554/eLife.74168.

Katz, L.N., Yu, G., Herman, J.P., & Krauzlis, R.J. (2021). Correlated variability in primate superior colliculus depends on functional class. 2021.09.15.460545.Cold Spring Harbor Laboratory. doi: 10.1101/2021.09.15.460545.

Wang, L., Herman, J.P., & Krauzlis, R.J. (2021). Neuronal modulation in the mouse superior colliculus during covert visual selective attention. 2021.02.05.429996.Cold Spring Harbor Laboratory. doi: 10.1101/2021.02.05.429996.

Yu, G., Herman, J.P., Katz, L.N., & Krauzlis, R.J. (2021). Microsaccades as a marker not a cause for attention-related modulation. 2021.09.11.459890.Cold Spring Harbor Laboratory. doi: 10.1101/2021.09.11.459890.

Herman, J.P., Arcizet, F., & Krauzlis, R.J. (2020). Attention-related modulation of caudate neurons depends on superior colliculus activity. Elife, 9, e53998.eLife. doi: 10.7554/eLife.53998.

Herman, J.P., Arcizet, F., & Krauzlis, R.J. (2019). Attention-related modulation of caudate neurons depends on superior colliculus activity. 843235.Cold Spring Harbor Laboratory. doi: 10.1101/843235.

Herman, J.P., Katz, L.N., & Krauzlis, R.J. (2019). Publisher Correction: Midbrain activity can explain perceptual decisions during an attention task. Nat Neurosci, 22(3), 504.Springer Nature. doi: 10.1038/s41593-018-0319-6.

Herman, J.P., Katz, L.N., & Krauzlis, R.J. (2018). Midbrain activity can explain perceptual decisions during an attention task. Nat Neurosci, 21(12), 1651-1655.Springer Nature. doi: 10.1038/s41593-018-0271-5.

Krauzlis, R.J., Bogadhi, A.R., Herman, J.P., & Bollimunta, A. (2018). Selective attention without a neocortex. Cortex, 102, 161-175.Elsevier. doi: 10.1016/j.cortex.2017.08.026.

Herman, J.P., & Krauzlis, R.J. (2017). Color-Change Detection Activity in the Primate Superior Colliculus. eNeuro, 4(2), eneuro.0046-eneu17.2017.Society for Neuroscience. doi: 10.1523/ENEURO.0046-17.2017.

Herman, J.P., Bogadhi, A.R., & Krauzlis, R.J. (2015). Effects of spatial cues on color-change detection in humans. J Vis, 15(6), 3.Association for Research in Vision and Ophthalmology (ARVO). doi: 10.1167/15.6.3.

Gray, M.J., Blangero, A., Herman, J.P., Wallman, J., & Harwood, M.R. (2014). Adaptation of naturally paced saccades. J Neurophysiol, 111(11), 2343-2354.American Physiological Society. doi: 10.1152/jn.00905.2013.

Heller, E.A., Cates, H.M., Peña, C.J., Sun, H., Shao, N., Feng, J., Golden, S.A., Herman, J.P., Walsh, J.J., Mazei-Robison, M., Ferguson, D., Knight, S., Gerber, M.A., Nievera, C., Han, M.H., Russo, S.J., Tamminga, C.S., Neve, R.L., Shen, L., Zhang, H.S., Zhang, F., & Nestler, E.J. (2014). Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci, 17(12), 1720-1727.Springer Nature. doi: 10.1038/nn.3871.

Gray, M., Blangero, A., Herman, J., & Harwood, M. (2013). Ultra-rapid Saccade Adaptation: Effective in Under Three Minutes. Journal of Vision, 13(9), 1215.Association for Research in Vision and Ophthalmology (ARVO). doi: 10.1167/13.9.1215.

Herman, J.P., Blangero, A., Madelain, L., Khan, A., & Harwood, M.R. (2013). Saccade adaptation as a model of flexible and general motor learning. Exp Eye Res, 114, 6-15.Elsevier. doi: 10.1016/j.exer.2013.04.001.

Herman, J.P., Cloud, C.P., & Wallman, J. (2013). End-point variability is not noise in saccade adaptation. In Lappe, M. (Ed.). PLoS One, 8(3), e59731.Public Library of Science (PLoS). doi: 10.1371/journal.pone.0059731.

Madelain, L., Herman, J.P., & Harwood, M.R. (2013). Saccade adaptation goes for the goal. J Vis, 13(4), 9.Association for Research in Vision and Ophthalmology (ARVO). doi: 10.1167/13.4.9.

Madelain, L., Harwood, M.R., Herman, J.P., & Wallman, J. (2010). Saccade adaptation is unhampered by distractors. J Vis, 10(12), 29.Association for Research in Vision and Ophthalmology (ARVO). doi: 10.1167/10.12.29.

Herman, J.P., Harwood, M.R., & Wallman, J. (2009). Saccade adaptation specific to visual context. J Neurophysiol, 101(4), 1713-1721.American Physiological Society. doi: 10.1152/jn.91076.2008.