Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563850.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563832.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Table S1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563814.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Table S2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563811.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 7 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563835.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S5 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563820.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 3 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563847.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563853.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S4 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563823.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S3 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563826.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S6 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563817.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563829.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 5 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563841.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S6 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563817.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Table S1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563814.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563850.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S4 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563823.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Data from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.c.7171072.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 4 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563844.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563829.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 6 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563838.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Data from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.c.7171072.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563832.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 3 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563847.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 6 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563838.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Table S2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563811.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 4 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563844.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S3 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563826.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 5 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563841.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 7 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563835.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Supplementary Figure S5 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563820.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). FIGURE 1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. doi: 10.1158/2767-9764.25563853.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Low Exposures to Amphibole or Serpentine Asbestos in Germline Bap1-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. Cancer Res Commun, 4(4), 1004-1015.American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.CRC-23-0423.
Lee, S., Cho, Y., Li, Y., Li, R., Brown, D., McAuliffe, P., Lee, A.V., Oesterreich, S., Zervantonakis, I.K., & Osmanbeyoglu, H.U. (2024). Cancer-cell derived S100A11 promotes macrophage recruitment in ER+ breast cancer. bioRxiv, 5(04-05), 2024.03.21.586041.Cold Spring Harbor Laboratory. doi: 10.1101/2024.03.21.586041.
Lee, S., Cho, Y., Li, Y., Li, R., Lau, A.W., Laird, M.S., Brown, D., McAuliffe, P., Lee, A.V., Oesterreich, S., Zervantonakis, I.K., & Osmanbeyoglu, H.U. (2024). Cancer-cell derived S100A11 promotes macrophage recruitment in ER+ breast cancer. Oncoimmunology, 13(1), 2429186.Taylor & Francis. doi: 10.1080/2162402X.2024.2429186.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. Cancer Res Commun, 4(8), 2133-2146.American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.CRC-23-0524.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764404.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764419.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764398.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Data from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.c.7405875.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764389.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764392.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764413.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764407.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764392.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764416.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764401.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764416.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764413.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764422.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764395.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764389.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 6 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764386.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764398.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 6 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764386.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764377.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764410.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764377.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Data from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.c.7405875.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 8 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764380.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764401.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764404.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 8 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764380.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764410.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 7 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764383.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764419.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 7 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764383.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764395.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764422.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.26764407.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 8 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046056.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 6 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046062.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046083.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046077.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 6 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046062.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046068.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046080.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046077.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046068.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046074.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046083.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 7 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046059.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046080.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046071.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 7 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046059.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046065.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046071.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 8 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046056.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046074.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Supplementary Table 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. doi: 10.1158/2767-9764.27046065.
Saeed, A., Park, R., Pathak, H., Al-Bzour, A.N., Dai, J., Phadnis, M., Al-Rajabi, R., Kasi, A., Baranda, J., Sun, W., Williamson, S., Chiu, Y.C., Osmanbeyoglu, H.U., Madan, R., Abushukair, H., Mulvaney, K., Godwin, A.K.Saeed, A. (2024). Clinical and biomarker results from a phase II trial of combined cabozantinib and durvalumab in patients with chemotherapy-refractory colorectal cancer (CRC): CAMILLA CRC cohort. Nat Commun, 15(1), 1533.Springer Nature. doi: 10.1038/s41467-024-45960-2.
Zhang, L., Cascio, S., Mellors, J.W., Buckanovich, R.J., & Osmanbeyoglu, H.U. (2024). Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. Commun Biol, 7(1), 20.Springer Nature. doi: 10.1038/s42003-023-05733-x.
Zhang, L., Sagan, A., Qin, B., Kim, E., Hu, B., & Osmanbeyoglu, H.U. (2024). STAN, a computational framework for inferring spatially informed transcription factor activity. bioRxiv, 5(07-08), 2024.06.26.600782.Cold Spring Harbor Laboratory. doi: 10.1101/2024.06.26.600782.
Ma, X., Lembersky, D., Kim, E.S., Bruno, T.C., Testa, J.R., & Osmanbeyoglu, H.U. (2023). Spatial landscape of malignant pleural and peritoneal mesothelioma tumor immune microenvironment. 2023.09.06.556559.Cold Spring Harbor Laboratory. doi: 10.1101/2023.09.06.556559.
Ramjattun, K., Ma, X., Gao, S.J., Singh, H., & Osmanbeyoglu, H.U. (2023). COVID-19db linkage maps of cell surface proteins and transcription factors in immune cells. J Med Virol, 95(6), e28887.Wiley. doi: 10.1002/jmv.28887.
Sagan, A., Ma, X., Ramjattun, K., & Osmanbeyoglu, H.U. (2023). Linking Expression of Cell-Surface Receptors with Transcription Factors by Computational Analysis of Paired Single-Cell Proteomes and Transcriptomes. Methods Mol Biol, 2660, 149-169.Springer Nature. doi: 10.1007/978-1-0716-3163-8_11.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2023). Supplemental Figures from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. doi: 10.1158/1078-0432.22480272.v1.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2023). SupplementaryTables from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. doi: 10.1158/1078-0432.22480269.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2023). Graphical Abstract from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. doi: 10.1158/1078-0432.22480275.v1.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2023). Data from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. doi: 10.1158/1078-0432.c.6530409.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2023). Graphical Abstract from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. doi: 10.1158/1078-0432.22480275.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2023). Data from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. doi: 10.1158/1078-0432.c.6530409.v1.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2023). SupplementaryTables from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. doi: 10.1158/1078-0432.22480269.v1.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2023). Supplemental Figures from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. doi: 10.1158/1078-0432.22480272.
Zhang, L., Cascio, S., Mellors, J.W., Buckanovich, R.J., & Osmanbeyoglu, H.U. (2023). Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. bioRxiv, 4(06-16), 2023.06.07.544095.Cold Spring Harbor Laboratory. doi: 10.1101/2023.06.07.544095.
Lee, S., & Osmanbeyoglu, H.U. (2022). Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas. 2022.04.08.487589.Cold Spring Harbor Laboratory. doi: 10.1101/2022.04.08.487589.
Lee, S., & Osmanbeyoglu, H.U. (2022). Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas. Breast Cancer Res, 24(1), 54.Springer Nature. doi: 10.1186/s13058-022-01550-y.
Osmanbeyoglu, H.U., Palmer, D., Sagan, A., Sementino, E., & Testa, J.R. (2022). Isolated BAP1 loss in malignant pleural mesothelioma predicts immunogenicity with implications for immunotherapeutic response. 2022.05.06.490947.Cold Spring Harbor Laboratory. doi: 10.1101/2022.05.06.490947.
Osmanbeyoglu, H.U., Palmer, D., Sagan, A., Sementino, E., Becich, M.J., & Testa, J.R. (2022). Isolated BAP1 Genomic Alteration in Malignant Pleural Mesothelioma Predicts Distinct Immunogenicity with Implications for Immunotherapeutic Response. Cancers (Basel), 14(22), 5626.MDPI. doi: 10.3390/cancers14225626.
Ramjattun, K., Ma, X., Gao, S.J., Singh, H., & Osmanbeyoglu, H.U. (2022). COVID-19db linkage maps of cell surface proteins and transcription factors in immune cells. 2022.12.14.520411.Cold Spring Harbor Laboratory. doi: 10.1101/2022.12.14.520411.
Sugitani, N., Vendetti, F.P., Cipriano, A.J., Pandya, P., Deppas, J.J., Moiseeva, T.N., Schamus-Haynes, S., Wang, Y., Palmer, D., Osmanbeyoglu, H.U., Bostwick, A., Snyder, N.W., Gong, Y.N., Aird, K.M., Delgoffe, G.M., Beumer, J.H., & Bakkenist, C.J. (2022). Thymidine rescues ATR kinase inhibition induced deoxyuridine contamination in genomic DNA, cell death, and Type 1 interferon expression. 2022.02.24.481821.Cold Spring Harbor Laboratory. doi: 10.1101/2022.02.24.481821.
Tao, Y., Ma, X., Palmer, D., Schwartz, R., Lu, X., & Osmanbeyoglu, H.U. (2022). Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers. Nucleic Acids Res, 50(19), 10869-10881.Oxford University Press (OUP). doi: 10.1093/nar/gkac881.
Ma, X., Somasundaram, A., Qi, Z., Hartman, D.J., Singh, H., & Osmanbeyoglu, H.U. (2021). SPaRTAN, a computational framework for linking cell-surface receptors to transcriptional regulators. Nucleic Acids Res, 49(17), 9633-9647.Oxford University Press (OUP). doi: 10.1093/nar/gkab745.
Tao, Y., Ma, X., Palmer, D., Schwartz, R., Lu, X., & Osmanbeyoglu, H.U. (2021). Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers. 2021.09.07.459263.Cold Spring Harbor Laboratory. doi: 10.1101/2021.09.07.459263.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. (2021). Recurrent Human Papillomavirus-Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. Clin Cancer Res, 27(22), 6250-6264.American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.CCR-20-4789.
Ma, X., Somasundaram, A., Qi, Z., Singh, H., & Osmanbeyoglu, H.U. (2020). SPaRTAN, a computational framework for linking cell-surface receptors to transcriptional regulators. 2020.12.22.423961.Cold Spring Harbor Laboratory. doi: 10.1101/2020.12.22.423961.
Moiseeva, T.N., Qian, C., Sugitani, N., Osmanbeyoglu, H.U., & Bakkenist, C.J. (2019). WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1- and S-phase cells. Proc Natl Acad Sci U S A, 116(48), 23891-23893.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1915108116.
Moiseeva, T.N., Yin, Y., Calderon, M.J., Qian, C., Schamus-Haynes, S., Sugitani, N., Osmanbeyoglu, H.U., Rothenberg, E., Watkins, S.C., & Bakkenist, C.J. (2019). An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication. Proc Natl Acad Sci U S A, 116(27), 13374-13383.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1903418116.
Osmanbeyoglu, H.U., Shimizu, F., Rynne-Vidal, A., Alonso-Curbelo, D., Chen, H.A., Wen, H.Y., Yeung, T.L., Jelinic, P., Razavi, P., Lowe, S.W., Mok, S.C., Chiosis, G., Levine, D.A., & Leslie, C.S. (2019). Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers. Nat Commun, 10(1), 4369.Springer Nature. doi: 10.1038/s41467-019-12291-6.
Toska, E., Osmanbeyoglu, H.U., Castel, P., Chan, C., Hendrickson, R.C., Elkabets, M., Dickler, M.N., Scaltriti, M., Leslie, C.S., Armstrong, S.A., & Baselga, J. (2019). Erratum for the Report "PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D" by E. Toska, H. U. Osmanbeyoglu, P. Castel, C. Chan, R. C. Hendrickson, M. Elkabets, M. N. Dickler, M. Scaltriti, C. S. Leslie, S. A. Armstrong, J. Baselga. Science, 363(6425), eaaw7574.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.aaw7574.
Hmeljak, J., Sanchez-Vega, F., Hoadley, K.A., Shih, J., Stewart, C., Heiman, D., Tarpey, P., Danilova, L., Drill, E., Gibb, E.A., Bowlby, R., Kanchi, R., Osmanbeyoglu, H.U., Sekido, Y., Takeshita, J., Newton, Y., Graim, K., Gupta, M., Gay, C.M., Diao, L., Gibbs, D.L., Thorsson, V., Iype, L., Kantheti, H., Severson, D.T., Ravegnini, G., Desmeules, P., Jungbluth, A.A., Travis, W.D., Dacic, S., Chirieac, L.R., Galateau-Sallé, F., Fujimoto, J., Husain, A.N., Silveira, H.C., Rusch, V.W., Rintoul, R.C., Pass, H., Kindler, H., Zauderer, M.G., Kwiatkowski, D.J., Bueno, R., Tsao, A.S., Creaney, J., Lichtenberg, T., Leraas, K., Bowen, J., TCGA Research Network, Felau, I., Zenklusen, J.C., Akbani, R., Cherniack, A.D., Byers, L.A., Noble, M.S., Fletcher, J.A., Robertson, A.G., Shen, R., Aburatani, H., Robinson, B.W., Campbell, P., & Ladanyi, M. (2018). Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov, 8(12), 1548-1565.American Association for Cancer Research (AACR). doi: 10.1158/2159-8290.CD-18-0804.
Korkut, A., Zaidi, S., Kanchi, R.S., Rao, S., Gough, N.R., Schultz, A., Li, X., Lorenzi, P.L., Berger, A.C., Robertson, G., Kwong, L.N., Datto, M., Roszik, J., Ling, S., Ravikumar, V., Manyam, G., Rao, A., Shelley, S., Liu, Y., Ju, Z., Hansel, D., de Velasco, G., Pennathur, A., Andersen, J.B., O'Rourke, C.J., Ohshiro, K., Jogunoori, W., Nguyen, B.N., Li, S., Osmanbeyoglu, H.U., Ajani, J.A., Mani, S.A., Houseman, A., Wiznerowicz, M., Chen, J., Gu, S., Ma, W., Zhang, J., Tong, P., Cherniack, A.D., Deng, C., Resar, L., Cancer Genome Atlas Research Network, Weinstein, J.N., Mishra, L., & Akbani, R. (2018). A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Syst, 7(4), 422-437.e7.Elsevier. doi: 10.1016/j.cels.2018.08.010.
Iyer, A.S., Osmanbeyoglu, H.U., & Leslie, C.S. (2017). Computational methods to dissect gene regulatory networks in cancer. Current Opinion in Systems Biology, 2, 114-121.Elsevier. doi: 10.1016/j.coisb.2017.04.004.
Luo, C.T., Osmanbeyoglu, H.U., Do, M.H., Bivona, M.R., Toure, A., Kang, D., Xie, Y., Leslie, C.S., & Li, M.O. (2017). Ets transcription factor GABP controls T cell homeostasis and immunity. Nat Commun, 8(1), 1062.Springer Nature. doi: 10.1038/s41467-017-01020-6.
Nargund, A.M., Osmanbeyoglu, H.U., Cheng, E.H., & Hsieh, J.J. (2017). SWI/SNF tumor suppressor gene PBRM1/BAF180 in human clear cell kidney cancer. Mol Cell Oncol, 4(4), e1342747.Taylor & Francis. doi: 10.1080/23723556.2017.1342747.
Osmanbeyoglu, H.U., Toska, E., Chan, C., Baselga, J., & Leslie, C.S. (2017). Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs. Nat Commun, 8(1), 14249.Springer Nature. doi: 10.1038/ncomms14249.
Toska, E., Osmanbeyoglu, H.U., Castel, P., Chan, C., Hendrickson, R.C., & Elkabets, M. (2017). PI3K SIGNALING REGULATES ER ACTIVITY VIA KMT2D IN ER+ BREAST CANCER. CANCER DISCOVERY, 7(5), 455.
Toska, E., Osmanbeyoglu, H.U., Castel, P., Chan, C., Hendrickson, R.C., Elkabets, M., Dickler, M.N., Scaltriti, M., Leslie, C.S., Armstrong, S.A., & Baselga, J. (2017). PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science, 355(6331), 1324-1330.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.aah6893.
Watters, R.J., Hartmaier, R.J., Osmanbeyoglu, H.U., Gillihan, R.M., Rae, J.M., Liao, L., Chen, K., Li, W., Lu, X., & Oesterreich, S. (2017). Steroid receptor coactivator-1 can regulate osteoblastogenesis independently of estrogen. Mol Cell Endocrinol, 448(C), 21-27.Elsevier. doi: 10.1016/j.mce.2017.03.005.
Feng, Y., van der Veeken, J., Shugay, M., Putintseva, E.V., Osmanbeyoglu, H.U., Dikiy, S., Hoyos, B.E., Moltedo, B., Hemmers, S., Treuting, P., Leslie, C.S., Chudakov, D.M., & Rudensky, A.Y. (2015). A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature, 528(7580), 132-136.Springer Nature. doi: 10.1038/nature16141.
Osmanbeyoglu, H.U., Pelossof, R., Bromberg, J.F., & Leslie, C.S. (2014). Linking signaling pathways to transcriptional programs in breast cancer. Genome Res, 24(11), 1869-1880.Cold Spring Harbor Laboratory. doi: 10.1101/gr.173039.114.
Osmanbeyoglu, H.U., Lu, K.N., Oesterreich, S., Day, R.S., Benos, P.V., Coronnello, C., & Lu, X. (2013). Estrogen represses gene expression through reconfiguring chromatin structures. Nucleic Acids Res, 41(17), 8061-8071.Oxford University Press (OUP). doi: 10.1093/nar/gkt586.
Kohle-Ersher, A., Chatterjee, P., Osmanbeyoglu, H.U., Hochheiser, H., & Bartos, C. (2012). Evaluating the barriers to point-of-care documentation for nursing staff. Comput Inform Nurs, 30(3), 126-133.Wolters Kluwer. doi: 10.1097/NCN.0b013e3182343f14.
Osmanbeyoglu, H.U., Hartmaier, R.J., Oesterreich, S., & Lu, X. (2012). Improving ChIP-seq peak-calling for functional co-regulator binding by integrating multiple sources of biological information. BMC Genomics, 13 Suppl 1(Suppl 1), S1.Springer Nature. doi: 10.1186/1471-2164-13-S1-S1.
Osmanbeyoglu, H.U., & Ganapathiraju, M.K. (2011). N-gram analysis of 970 microbial organisms reveals presence of biological language models. BMC Bioinformatics, 12(1), 12.Springer Nature. doi: 10.1186/1471-2105-12-12.
Chalancon, G., Kosloff, M., Osmanbeyoglu, H.U., & Saraswathi, S. (2010). PLoS Computational Biology conference postcards from ISMB 2010. In Bourne, P.E. (Ed.). PLoS Comput Biol, 6(11), e1002000.Public Library of Science (PLoS). doi: 10.1371/journal.pcbi.1002000.
Osmanbeyoglu, H.U., Wehner, J.A., Carbonell, J.G., & Ganapathiraju, M.K. (2010). Active machine learning for transmembrane helix prediction. BMC Bioinformatics, 11 Suppl 1(Suppl 1), S58.Springer Nature. doi: 10.1186/1471-2105-11-S1-S58.
Osmanbeyoglu, H.U., Hur, T.B., & Kim, H.K. (2009). Thin alumina nanoporous membranes for similar size biomolecule separation. JOURNAL OF MEMBRANE SCIENCE, 343(1-2), 1-6.Elsevier. doi: 10.1016/j.memsci.2009.07.027.
Osmanbeyoglu, H.U., & Leslie, C. (2017). Modeling the impact of mutations in ubiquitin pathway genes across human cancers. In CANCER RESEARCH, 77(13_Supplement), (p. lb-010-lb-010).American Association for Cancer Research (AACR). doi: 10.1158/1538-7445.AM2017-LB-010.
Osmanbeyoglu, H.U., Toska, E., Baselga, J., & Leslie, C. (2016). Modeling the impact of somatic alterations across human cancers. In CANCER RESEARCH, 76(14_Supplement), (p. 781).American Association for Cancer Research (AACR). doi: 10.1158/1538-7445.AM2016-781.