headshot of Fatima Syed-Picard

Fatima Syed-Picard

Assistant Professor
Bioengineering Department

overview

Development of biomimetic tissue engineered constructs for use in regenerative therapies or as model systems to study tissue development or disease states; understanding and manipulating tissue patterning in engineered tissues; stem cell biology; emphasis on craniofacial tissues´┐Ż

about

(2015) NIH Pathway to Independence Award (NIH K99/R00).

(2009 - 2013) NIH National Research Service Award (NIH F31).

BSE, Materials Science and Engineering, University of Michigan, 2004

MSE, Materials Science and Engineering, University of Michigan, 2004

PhD, Bioengineering, University of Pittsburgh, 2013

Drewry, M.D., Dailey, M.T., Rothermund, K., Backman, C., Dahl, K.N., & Syed-Picard, F.N. (2022). Promoting and Orienting Axon Extension Using Scaffold-Free Dental Pulp Stem Cell Sheets. ACS BIOMATERIALS SCIENCE & ENGINEERING, 8(2), 814-825.American Chemical Society (ACS). doi: 10.1021/acsbiomaterials.1c01517.

Rothermund, K., Calabrese, T.C., & Syed-Picard, F.N. (2022). Differential Effects of Escherichia coli- Versus Porphyromonas gingivalisderived Lipopolysaccharides on Dental Pulp Stem Cell Differentiation in Scaffold-free Engineered Tissues. JOURNAL OF ENDODONTICS, 48(11), 1378-+.Elsevier BV. doi: 10.1016/j.joen.2022.08.010.

Ahmed, M.N., Shi, D., Dailey, M.T., Rothermund, K., Drewry, M.D., Calabrese, T.C., Cui, X.T., & Syed-Picard, F.N. (2021). Dental Pulp Cell Sheets Enhance Facial Nerve Regeneration via Local Neurotrophic Factor Delivery. TISSUE ENGINEERING PART A, 27(17-18), 1128-1139.Mary Ann Liebert Inc. doi: 10.1089/ten.tea.2020.0265.

Sonmez, U.M., Wood, A., Justus, K., Jiang, W., Syed-Picard, F., LeDuc, P.R., Kalinski, P., & Davidson, L.A. (2020). Chemotactic Responses of Jurkat Cells in Microfluidic Flow-Free Gradient Chambers. MICROMACHINES, 11(4), 384.MDPI AG. doi: 10.3390/mi11040384.

Basu, A., Rothermund, K., Ahmed, M.N., & Syed-Picard, F.N. (2019). Self-Assembly of an Organized Cementum-Periodontal Ligament-Like Complex Using Scaffold-Free Tissue Engineering. FRONTIERS IN PHYSIOLOGY, 10(APR), 422.Frontiers Media SA. doi: 10.3389/fphys.2019.00422.

Syed-Picard, F.N., Du, Y., Hertsenberg, A.J., Palchesko, R., Funderburgh, M.L., Feinberg, A.W., & Funderburgh, J.L. (2018). Scaffold-free tissue engineering of functional corneal stromal tissue. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 12(1), 59-69.Hindawi Limited. doi: 10.1002/term.2363.

Syed-Picard, F.N., Du, Y., Lathrop, K.L., Mann, M.M., Funderburgh, M.L., & Funderburgh, J.L. (2015). Dental Pulp Stem Cells: A New Cellular Resource for Corneal Stromal Regeneration. STEM CELLS TRANSLATIONAL MEDICINE, 4(3), 276-285.Oxford University Press (OUP). doi: 10.5966/sctm.2014-0115.

Basu, S., Hertsenberg, A.J., Funderburgh, M.L., Burrow, M.K., Mann, M.M., Du, Y., Lathrop, K.L., Syed-Picard, F.N., Adams, S.M., Birk, D.E., & Funderburgh, J.L. (2014). Human limbal biopsy-derived stromal stem cells prevent corneal scarring. SCIENCE TRANSLATIONAL MEDICINE, 6(266), 266ra172.American Association for the Advancement of Science (AAAS). doi: 10.1126/scitranslmed.3009644.

Syed-Picard, F.N., Jr, R.H.L., Kumta, P.N., & Sfeir, C. (2014). Scaffoldless Tissue-engineered Dental Pulp Cell Constructs for Endodontic Therapy. JOURNAL OF DENTAL RESEARCH, 93(3), 250-255.SAGE Publications. doi: 10.1177/0022034513517901.

Syed-Picard, F.N., Shah, G.A., Costello, B.J., & Sfeir, C. (2014). Regeneration of Periosteum by Human Bone Marrow Stromal Cell Sheets. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 72(6), 1078-1083.Elsevier BV. doi: 10.1016/j.joms.2014.02.005.

Syed-Picard, F.N., Jayaraman, T., Lam, R.S.K., Beniash, E., & Sfeir, C. (2013). Osteoinductivity of calcium phosphate mediated by connexin 43. BIOMATERIALS, 34(15), 3763-3774.Elsevier BV. doi: 10.1016/j.biomaterials.2013.01.095.

Embree, M.C., Kilts, T.M., Ono, M., Inkson, C.A., Syed-Picard, F., Karsdal, M.A., Oldberg, A., Bi, Y., & Young, M.F. (2010). Biglycan and Fibromodulin Have Essential Roles in Regulating Chondrogenesis and Extracellular Matrix Turnover in Temporomandibular Joint Osteoarthritis. AMERICAN JOURNAL OF PATHOLOGY, 176(2), 812-826.Elsevier BV. doi: 10.2353/ajpath.2010.090450.

Smietana, M.J., Syed-Picard, F.N., Ma, J., Kostrominova, T., Arruda, E.M., & Larkin, L.M. (2010). The effect of implantation on scaffoldless three-dimensional engineered bone constructs (vol 45, pg 512, 2009). IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 46(1), 82.Springer Science and Business Media LLC. doi: 10.1007/s11626-009-9251-0.

Kilts, T., Ameye, L., Syed-Picard, F., Ono, M., Berendsen, A.D., Oldberg, A., Heegaard, A.M., Bi, Y., & Young, M.F. (2009). Potential roles for the small leucine-rich proteoglycans biglycan and fibromodulin in ectopic ossification of tendon induced by exercise and in modulating rotarod performance. SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS, 19(4), 536-546.Wiley. doi: 10.1111/j.1600-0838.2009.00909.x.

Smietana, M.J., Syed-Picard, F.N., Ma, J., Kostrominova, T., Arruda, E.M., & Larkin, L.M. (2009). The effect of implantation on scaffoldless three-dimensional engineered bone constructs. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 45(9), 512-522.Springer Science and Business Media LLC. doi: 10.1007/s11626-009-9216-3.

Syed-Picard, F.N., Larkin, L.M., Shaw, C.M., & Arruda, E.M. (2009). Three-Dimensional Engineered Bone from Bone Marrow Stromal Cells and Their Autogenous Extracellular Matrix. TISSUE ENGINEERING PART A, 15(1), 187-195.Mary Ann Liebert Inc. doi: 10.1089/ten.tea.2007.0140.

Syed-Picard, F.N., Du, Y., Palchesko, R., Funderburgh, M.L., Hertsenberg, A., Feinberg, A.W., & Funderburgh, J.L. (2015). Scaffold-free engineering of stromal lamellar tissue. In INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 56(7).

Syed-Picard, F.N., Mann, M., Funderburgh, M.L., Lathrop, K.L., & Funderburgh, J.L. (2014). Dental Pulp Stem Cells for Corneal Stroma Regeneration. In INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 55(13).

Syed-Picard, F.N., Larkin, L.M., & Arruda, E.M. (2007). Development of scaffold-less 3D bone tissue engineered from rat bone marrow stromal. In FASEB JOURNAL, 21(6), (p. A1233).