Kavoosi, S., Picard, M., & Kaufman, B.A. (2024). TFAM mislocalization during spermatogenesis. Trends Genet, 40(2), 112-114.Elsevier. doi: 10.1016/j.tig.2023.11.002.
Ware, S.A., Kliment, C.R., Giordano, L., Redding, K.M., Rumsey, W.L., Bates, S., Zhang, Y., Sciurba, F.C., Nouraie, S.M., & Kaufman, B.A. (2024). Cell-free DNA levels associate with COPD exacerbations and mortality. Respir Res, 25(1), 42.Springer Nature. doi: 10.1186/s12931-023-02658-1.
Bobba-Alves, N., Sturm, G., Lin, J., Ware, S.A., Karan, K.R., Monzel, A.S., Bris, C., Procaccio, V., Lenaers, G., Higgins-Chen, A., Levine, M., Horvath, S., Santhanam, B.S., Kaufman, B.A., Hirano, M., Epel, E., & Picard, M. (2023). Cellular allostatic load is linked to increased energy expenditure and accelerated biological aging. Psychoneuroendocrinology, 155, 106322.Elsevier. doi: 10.1016/j.psyneuen.2023.106322.
Michelson, J., Rausser, S., Peng, A., Yu, T., Sturm, G., Trumpff, C., Kaufman, B.A., Rai, A.J., & Picard, M. (2023). MitoQuicLy: A high-throughput method for quantifying cell-free DNA from human plasma, serum, and saliva. Mitochondrion, 71, 26-39.Elsevier. doi: 10.1016/j.mito.2023.05.001.
Rutledge, C., Enriquez, A., Redding, K., Lopez, M., Mullett, S., Gelhaus, S.L., Jurczak, M., Goetzman, E., & Kaufman, B.A. (2023). Liraglutide Protects Against Diastolic Dysfunction and Improves Ventricular Protein Translation. Cardiovasc Drugs Ther, 1-14.Springer Nature. doi: 10.1007/s10557-023-07482-9.
Rutledge, C.A., Lagranha, C., Chiba, T., Redding, K., Stolz, D.B., Goetzman, E., Sims-Lucas, S., & Kaufman, B.A. (2023). Metformin preconditioning protects against myocardial stunning and preserves protein translation in a mouse model of cardiac arrest. J Mol Cell Cardiol Plus, 4, 100034.Elsevier. doi: 10.1016/j.jmccpl.2023.100034.
Rutter, G.A., Sidarala, V., Kaufman, B.A., & Soleimanpour, S.A. (2023). Mitochondrial metabolism and dynamics in pancreatic beta cell glucose sensing. Biochem J, 480(11), 773-789.Portland Press. doi: 10.1042/BCJ20230167.
Sturm, G., Karan, K.R., Monzel, A.S., Santhanam, B., Taivassalo, T., Bris, C., Ware, S.A., Cross, M., Towheed, A., Higgins-Chen, A., McManus, M.J., Cardenas, A., Lin, J., Epel, E.S., Rahman, S., Vissing, J., Grassi, B., Levine, M., Horvath, S., Haller, R.G., Lenaers, G., Wallace, D.C., St-Onge, M.P., Tavazoie, S., Procaccio, V., Kaufman, B.A., Seifert, E.L., Hirano, M., & Picard, M. (2023). OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol, 6(1), 22.Springer Nature. doi: 10.1038/s42003-022-04303-x.
Verma, M., Francis, L., Lizama, B.N., Callio, J., Fricklas, G., Wang, K.Z.Q., Kaufman, B.A., D'Aiuto, L., Stolz, D.B., Watkins, S.C., Nimgaonkar, V.L., Soto-Gutierrez, A., Goldstein, A., & Chu, C.T. (2023). iPSC-Derived Neurons from Patients with POLG Mutations Exhibit Decreased Mitochondrial Content and Dendrite Simplification. Am J Pathol, 193(2), 201-212.Elsevier. doi: 10.1016/j.ajpath.2022.11.002.
Zhang, M., Feng, N., Peng, Z., Thapa, D., Stoner, M.W., Manning, J.R., McTiernan, C.F., Yang, X., Jurczak, M.J., Guimaraes, D., Rao, K., Shiva, S., Kaufman, B.A., Sack, M.N., & Scott, I. (2023). Reduced acetylation of TFAM promotes bioenergetic dysfunction in the failing heart. iScience, 26(6), 106942.Elsevier. doi: 10.1016/j.isci.2023.106942.
Carew, N.T., Schmidt, H.M., Yuan, S., Galley, J.C., Hall, R., Altmann, H.M., Hahn, S.A., Miller, M.P., Wood, K.C., Gabris, B., Stapleton, M.C., Hartwick, S., Fazzari, M., Wu, Y.L., Trebak, M., Kaufman, B.A., McTiernan, C.F., Schopfer, F.J., Navas, P., Thibodeau, P.H., McNamara, D.M., Salama, G., & Straub, A.C. (2022). Loss of cardiomyocyte CYB5R3 impairs redox equilibrium and causes sudden cardiac death. J Clin Invest, 132(18), e147120.American Society for Clinical Investigation. doi: 10.1172/JCI147120.
Giordano, L., Gregory, A.D., Pérez Verdaguer, M., Ware, S.A., Harvey, H., DeVallance, E., Brzoska, T., Sundd, P., Zhang, Y., Sciurba, F.C., Shapiro, S.D., & Kaufman, B.A. (2022). Extracellular Release of Mitochondrial DNA: Triggered by Cigarette Smoke and Detected in COPD. Cells, 11(3), 369.MDPI. doi: 10.3390/cells11030369.
Sturm, G., Monzel, A.S., Karan, K.R., Michelson, J., Ware, S.A., Cardenas, A., Lin, J., Bris, C., Santhanam, B., Murphy, M.P., Levine, M.E., Horvath, S., Belsky, D.W., Wang, S., Procaccio, V., Kaufman, B.A., Hirano, M., & Picard, M. (2022). A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations. Sci Data, 9(1), 751.Springer Nature. doi: 10.1038/s41597-022-01852-y.
Kanshana, J.S., Mattila, P.E., Ewing, M.C., Wood, A.N., Schoiswohl, G., Meyer, A.C., Kowalski, A., Rosenthal, S.L., Gingras, S., Kaufman, B.A., Lu, R., Weeks, D.E., McGarvey, S.T., Minster, R.L., Hawley, N.L., & Kershaw, E.E. (2021). A murine model of the human CREBRFR457Q obesity-risk variant does not influence energy or glucose homeostasis in response to nutritional stress. In Bader, M. (Ed.). PLoS One, 16(9), e0251895.Public Library of Science (PLoS). doi: 10.1371/journal.pone.0251895.
Kaufman, B.A., & Mora, A.L. (2021). IRGM1, a guardian of mitochondrial DAMP-mediated autoinflammation. Nat Immunol, 22(3), 272-273.Springer Nature. doi: 10.1038/s41590-021-00877-6.
Levy, M.A., Kerkhof, J., Belmonte, F.R., Kaufman, B.A., Bhai, P., Brady, L., Bursztyn, L.L.C.D., Tarnopolsky, M., Rupar, T., & Sadikovic, B. (2021). Validation and clinical performance of a combined nuclear-mitochondrial next-generation sequencing and copy number variant analysis panel in a Canadian population. Am J Med Genet A, 185(2), 486-499.Wiley. doi: 10.1002/ajmg.a.61998.
Trumpff, C., Michelson, J., Lagranha, C.J., Taleon, V., Karan, K.R., Sturm, G., Lindqvist, D., Fernström, J., Moser, D., Kaufman, B.A., & Picard, M. (2021). Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion, 59, 225-245.Elsevier. doi: 10.1016/j.mito.2021.04.002.
Cole, L.K., Mejia, E.M., Sparagna, G.C., Vandel, M., Xiang, B., Han, X., Dedousis, N., Kaufman, B.A., Dolinsky, V.W., & Hatch, G.M. (2020). Cardiolipin deficiency elevates susceptibility to a lipotoxic hypertrophic cardiomyopathy. J Mol Cell Cardiol, 144, 24-34.Elsevier. doi: 10.1016/j.yjmcc.2020.05.001.
Edmunds, L.R., Xie, B., Mills, A.M., Huckestein, B.R., Undamatla, R., Murali, A., Pangburn, M.M., Martin, J., Sipula, I., Kaufman, B.A., Scott, I., & Jurczak, M.J. (2020). Liver-specific Prkn knockout mice are more susceptible to diet-induced hepatic steatosis and insulin resistance. Mol Metab, 41, 101051.Elsevier. doi: 10.1016/j.molmet.2020.101051.
Kolesar, J.E., & Kaufman, B.A. (2020). Using Two-Dimensional Intact Mitochondrial DNA (mtDNA) Agarose Gel Electrophoresis (2D-IMAGE) to Detect Changes in Topology Associated with Mitochondrial Replication, Transcription, and Damage. Methods Mol Biol, 2119, 25-42.Springer Nature. doi: 10.1007/978-1-0716-0323-9_3.
Rutledge, C., Cater, G., McMahon, B., Guo, L., Nouraie, S.M., Wu, Y., Villanueva, F., & Kaufman, B.A. (2020). Commercial 4-dimensional echocardiography for murine heart volumetric evaluation after myocardial infarction. Cardiovasc Ultrasound, 18(1), 9.Springer Nature. doi: 10.1186/s12947-020-00191-5.
Rutledge, C.A., Chiba, T., Redding, K., Dezfulian, C., Sims-Lucas, S., & Kaufman, B.A. (2020). A novel ultrasound-guided mouse model of sudden cardiac arrest. In Johnson, D.M. (Ed.). PLoS One, 15(12), e0237292.Public Library of Science (PLoS). doi: 10.1371/journal.pone.0237292.
Ware, S.A., Desai, N., Lopez, M., Leach, D., Zhang, Y., Giordano, L., Nouraie, M., Picard, M., & Kaufman, B.A. (2020). An automated, high-throughput methodology optimized for quantitative cell-free mitochondrial and nuclear DNA isolation from plasma. J Biol Chem, 295(46), 15677-15691.Elsevier. doi: 10.1074/jbc.RA120.015237.
Belmonte, F.R., Dedousis, N., Sipula, I., Desai, N.A., Singhi, A.D., Chu, Y., Zhang, Y., Bannwarth, S., Paquis-Flucklinger, V., Harrington, L., Shiva, S., Jurczak, M.J., O'Doherty, R.M., & Kaufman, B.A. (2019). Petite Integration Factor 1 (PIF1) helicase deficiency increases weight gain in Western diet-fed female mice without increased inflammatory markers or decreased glucose clearance. In Fam, B. (Ed.). PLoS One, 14(5), e0203101.Public Library of Science (PLoS). doi: 10.1371/journal.pone.0203101.
de Jesus, D.S., DeVallance, E., Li, Y., Falabella, M., Guimaraes, D., Shiva, S., Kaufman, B.A., Gladwin, M.T., & Pagano, P.J. (2019). Nox1/Ref-1-mediated activation of CREB promotes Gremlin1-driven endothelial cell proliferation and migration. Redox Biol, 22, 101138.Elsevier. doi: 10.1016/j.redox.2019.101138.
Falabella, M., Kolesar, J.E., Wallace, C., de Jesus, D., Sun, L., Taguchi, Y.V., Wang, C., Wang, T., Xiang, I.M., Alder, J.K., Maheshan, R., Horne, W., Turek-Herman, J., Pagano, P.J., St Croix, C.M., Sondheimer, N., Yatsunyk, L.A., Johnson, F.B., & Kaufman, B.A. (2019). G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci Rep, 9(1), 5605.Springer Nature. doi: 10.1038/s41598-019-41464-y.
Guha, M., Srinivasan, S., Guja, K., Mejia, E., Garcia-Diaz, M., Johnson, F.B., Ruthel, G., Kaufman, B.A., Rappaport, E.F., Glineburg, M.R., Fang, J.K., Klein-Szanto, A.J., Nakagawa, H., Basha, J., Kundu, T., & Avadhani, N.G. (2019). Correction to: HnRNPA2 is a novel histone acetyltransferase that mediates mitochondrial stress-induced nuclear gene expression. Cell Discov, 5(1), 28.Springer Nature. doi: 10.1038/s41421-019-0097-7.
Kaufman, B.A., Picard, M., & Sondheimer, N. (2019). Mitochondrial DNA, nuclear context, and the risk for carcinogenesis. Environ Mol Mutagen, 60(5), 455-462.Wiley. doi: 10.1002/em.22169.
McManus, M.J., Picard, M., Chen, H.W., De Haas, H.J., Potluri, P., Leipzig, J., Towheed, A., Angelin, A., Sengupta, P., Morrow, R.M., Kauffman, B.A., Vermulst, M., Narula, J., & Wallace, D.C. (2019). Mitochondrial DNA Variation Dictates Expressivity and Progression of Nuclear DNA Mutations Causing Cardiomyopathy. Cell Metab, 29(1), 78-90.e5.Elsevier. doi: 10.1016/j.cmet.2018.08.002.
Patil, P., Falabella, M., Saeed, A., Lee, D., Kaufman, B., Shiva, S., Croix, C.S., Van Houten, B., Niedernhofer, L.J., Robbins, P.D., Lee, J., Gwendolyn, S., & Vo, N.V. (2019). Oxidative stress-induced senescence markedly increases disc cell bioenergetics. Mech Ageing Dev, 180, 97-106.Elsevier. doi: 10.1016/j.mad.2019.04.006.
Trumpff, C., Marsland, A.L., Basualto-Alarcón, C., Martin, J.L., Carroll, J.E., Sturm, G., Vincent, A.E., Mosharov, E.V., Gu, Z., Kaufman, B.A., & Picard, M. (2019). Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology, 106, 268-276.Elsevier. doi: 10.1016/j.psyneuen.2019.03.026.
Guha, M., Srinivasan, S., Johnson, F.B., Ruthel, G., Guja, K., Garcia-Diaz, M., Kaufman, B.A., Glineburg, M.R., Fang, J., Nakagawa, H., Basha, J., Kundu, T., & Avadhani, N.G. (2018). hnRNPA2 mediated acetylation reduces telomere length in response to mitochondrial dysfunction. In Maiorano, D. (Ed.). PLoS One, 13(11), e0206897.Public Library of Science (PLoS). doi: 10.1371/journal.pone.0206897.
Falabella, M., Sun, L., Barr, J., Pena, A.Z., Kershaw, E.E., Gingras, S., Goncharova, E.A., & Kaufman, B.A. (2017). Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo. G3 (Bethesda), 7(10), 3533-3542.Oxford University Press (OUP). doi: 10.1534/g3.117.300123.
Kaufman, B.A., & Van Houten, B. (2017). POLB: A new role of DNA polymerase beta in mitochondrial base excision repair. DNA Repair (Amst), 60, A1-A5.Elsevier. doi: 10.1016/j.dnarep.2017.11.002.
Kaufman, B.A., Li, C., & Soleimanpour, S.A. (2015). Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Aspects Med, 42, 91-104.Elsevier. doi: 10.1016/j.mam.2015.01.004.
Soleimanpour, S.A., Ferrari, A.M., Raum, J.C., Groff, D.N., Yang, J., Kaufman, B.A., & Stoffers, D.A. (2015). Diabetes Susceptibility Genes Pdx1 and Clec16a Function in a Pathway Regulating Mitophagy in β-Cells. Diabetes, 64(10), 3475-3484.American Diabetes Association. doi: 10.2337/db15-0376.