headshot of Yang Liu

Yang Liu

Adjunct Professor
Professor
Biomedical Optical Imaging Laboratory Lab Twitter

overview

The laboratory of Dr. Yang Liu focuses on developing multiscale optical microscopy techniques spanning seven orders of magnitude, bridging the nanoscale to the mesoscale, to significantly advance precision medicine such as early detection, prevention, and treatment of cancer. The technologies integrate label-free quantitative phase imaging with hyper-plex mesoscale microscopy, super-resolution fluorescence microscopy, and highly sensitive and specific across-the-scale imaging probes, which are paired with artificial intelligence (AI), robotic automation, and large-scale image informatics. This transformative approach allows for dynamic high-content phenotyping and provides invaluable insights into the molecular changes under complex tissue microenvironments. This is critical in understanding the progression from precursors to invasive cancer and deciphering the mechanisms behind therapeutic resistance. The fusion of cross-scale imaging with AI-driven systems biology and automation is poised to drive future scientific discoveries and transform personalized medicine.

about

BS, Chemistry, Nankai University, 1995 - 1999

MS, Chemistry, University of Chicago, 2000 - 2001

PhD, Biomedical Engineering (biomedical optics), Northwestern University, 2002 - 2006

Cang, H., Liu, Y., & Xing, J. (2024). Mosaic-PICASSO: accurate crosstalk removal for multiplex fluorescence imaging. In Peng, H. (Ed.). Bioinformatics, 40(1), btad784.Oxford University Press (OUP). doi: 10.1093/bioinformatics/btad784.

Liu, Y., & Uttam, S. (2024). Perspective on quantitative phase imaging to improve precision cancer medicine. J Biomed Opt, 29(Suppl 2), S22705.SPIE, the international society for optics and photonics. doi: 10.1117/1.JBO.29.S2.S22705.

Ma, H., Chen, M., Nguyen, P., & Liu, Y. (2024). Toward drift-free high-throughput nanoscopy through adaptive intersection maximization. Sci Adv, 10(21), eadm7765.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.adm7765.

Ma, H., Chen, M., Xu, J., Yang, Y., Zhao, Y., & Liu, Y. (2024). An Omni-Mesoscope for multiscale high-throughput quantitative phase imaging of cellular dynamics and high-content molecular characterization. Sci Adv, 10(42), eadq5009.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.adq5009.

Ma, H., Nguyen, P., & Liu, Y. (2024). A Versatile Drift-Free Super-Resolution Imaging Method via Oblique Bright-Field Correlation. Adv Sci (Weinh), e2412127.Wiley. doi: 10.1002/advs.202412127.

Xu, J., Sun, X., Chen, Z., Ma, H., & Liu, Y. (2024). Super-resolution imaging of T lymphocyte activation reveals chromatin decondensation and disrupted nuclear envelope. Commun Biol, 7(1), 717.Springer Nature. doi: 10.1038/s42003-024-06393-1.

Ma, F., Akolkar, H., Xu, J., Liu, Y., Popova, D., Xie, J., Youssef, M.M., Benosman, R., Hart, R.P., & Herrup, K. (2023). The Amyloid Precursor Protein Modulates the Position and Length of the Axon Initial Segment. J Neurosci, 43(10), 1830-1844.Society for Neuroscience. doi: 10.1523/JNEUROSCI.0172-22.2023.

Han, L., Mich-Basso, J.D., Li, Y., Ammanamanchi, N., Xu, J., Bargaje, A.P., Liu, H., Wu, L., Jeong, J.H., Franks, J., Stolz, D.B., Wu, Y.L., Rajasundaram, D., Liu, Y., & Kühn, B. (2022). Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts. Dev Cell, 57(20), 2397-2411.e9.Elsevier. doi: 10.1016/j.devcel.2022.09.017.

Ma, F., Xu, J., Liu, Y., Popova, D., Youssef, M.M., Hart, R.P., & Herrup, K. (2022). The amyloid precursor protein modulates the position and length of the axon initial segment offering a new perspective on Alzheimer’s disease genetics. 2022.01.23.477413.Cold Spring Harbor Laboratory. doi: 10.1101/2022.01.23.477413.

Skoko, J.J., Cao, J., Gaboriau, D., Attar, M., Asan, A., Hong, L., Paulsen, C.E., Ma, H., Liu, Y., Wu, H., Harkness, T., Furdui, C.M., Manevich, Y., Morrison, C.G., Brown, E.T., Normolle, D., Spies, M., Spies, M.A., Carroll, K., & Neumann, C.A. (2022). Redox regulation of RAD51 Cys319 and homologous recombination by peroxiredoxin 1. Redox Biol, 56, 102443.Elsevier. doi: 10.1016/j.redox.2022.102443.

Thota, P.N., Nasibli, J., Kumar, P., Sanaka, M.R., Chak, A., Zhang, X., Liu, X., Uttam, S., & Liu, Y. (2022). Prediction of neoplastic progression in Barrett's esophagus using nanoscale nuclear architecture mapping: a pilot study. Gastrointest Endosc, 95(6), 1239-1246.Elsevier. doi: 10.1016/j.gie.2022.01.007.

Xu, J., Sun, X., Kim, K., Brand, R.M., Hartman, D., Ma, H., Brand, R.E., Bai, M., & Liu, Y. (2022). Ultrastructural visualization of chromatin in cancer pathogenesis using a simple small-molecule fluorescent probe. Sci Adv, 8(9), eabm8293.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.abm8293.

Ma, H., & Liu, Y. (2021). Robust emitter localization with enhanced harmonic analysis. Opt Lett, 46(23), 5798-5801.Optica Publishing Group. doi: 10.1364/OL.437409.

Ma, H., & Liu, Y. (2021). Embedded nanometer position tracking based on enhanced phasor analysis: erratum. Opt Lett, 46(18), 4639.Optica Publishing Group. doi: 10.1364/OL.440217.

Ma, H., & Liu, Y. (2021). Embedded nanometer position tracking based on enhanced phasor analysis. Opt Lett, 46(16), 3825-3828.Optica Publishing Group. doi: 10.1364/OL.433740.

Ma, H., & Liu, Y. (2021). Super-Resolution Imaging through Single-Molecule Localization. In Biomedical Optical Imaging. (p. 4-1-4-26).AIP Publishing. doi: 10.1063/9780735423794_004.

Ma, H., Jiang, W., Xu, J., & Liu, Y. (2021). Enhanced super-resolution microscopy by extreme value based emitter recovery. Sci Rep, 11(1), 20417.Springer Nature. doi: 10.1038/s41598-021-00066-3.

Mela, C.A., & Liu, Y. (2021). Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images. BMC Bioinformatics, 22(1), 325.Springer Nature. doi: 10.1186/s12859-021-04245-x.

Xiang, Y., Sang, Z., Bitton, L., Xu, J., Liu, Y., Schneidman-Duhovny, D., & Shi, Y. (2021). Integrative proteomics identifies thousands of distinct, multi-epitope, and high-affinity nanobodies. Cell Syst, 12(3), 220-234.e9.Elsevier. doi: 10.1016/j.cels.2021.01.003.

Xu, J., & Liu, Y. (2021). Probing Chromatin Compaction and Its Epigenetic States in situ With Single-Molecule Localization-Based Super-Resolution Microscopy. Front Cell Dev Biol, 9, 653077.Frontiers. doi: 10.3389/fcell.2021.653077.

Ma, H., & Liu, Y. (2020). Super-resolution localization microscopy: Toward high throughput, high quality, and low cost. APL Photonics, 5(6), 060902.AIP Publishing. doi: 10.1063/5.0011731.

Ma, H., Wang, P., Shang, D., & Liu, Y. (2020). Spatial-domain low-coherence quantitative phase microscopy to improve the cytological diagnosis of pancreatic cancer. J Investig Med, 68(1), 60-67.SAGE Publications. doi: 10.1136/jim-2019-000997.

Troy, K., Liu, Y., & Hainer, S.J. (2020). PathSTORM: a road to early cancer detection. Mol Cell Oncol, 7(5), 1776086.Taylor & Francis. doi: 10.1080/23723556.2020.1776086.

Xu, J., Ma, H., & Liu, Y. (2020). Optimized Stochastic Optical Reconstruction Microscopy for Imaging Chromatin Structure in Pathological Tissue. Curr Protoc Cytom, 94(1), e78.Wiley. doi: 10.1002/cpcy.78.

Xu, J., Ma, H., Ma, H., Jiang, W., Mela, C.A., Duan, M., Zhao, S., Gao, C., Hahm, E.R., Lardo, S.M., Troy, K., Sun, M., Pai, R., Stolz, D.B., Zhang, L., Singh, S., Brand, R.E., Hartman, D.J., Hu, J., Hainer, S.J., & Liu, Y. (2020). Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis. Nat Commun, 11(1), 1899.Springer Nature. doi: 10.1038/s41467-020-15718-7.

Liu, Y., & Xu, J. (2019). High-resolution microscopy for imaging cancer pathobiology. Curr Pathobiol Rep, 7(3), 85-96.Springer Nature. doi: 10.1007/s40139-019-00201-w.

Ma, H., Xu, J., & Liu, Y. (2019). WindSTORM: Robust online image processing for high-throughput nanoscopy. Sci Adv, 5(4), eaaw0683.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaw0683.

Nmezi, B., Xu, J., Fu, R., Armiger, T.J., Rodriguez-Bey, G., Powell, J.S., Ma, H., Sullivan, M., Tu, Y., Chen, N.Y., Young, S.G., Stolz, D.B., Dahl, K.N., Liu, Y., & Padiath, Q.S. (2019). Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc Natl Acad Sci U S A, 116(10), 4307-4315.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1810070116.

Uttam, S., Hashash, J.G., LaFace, J., Binion, D., Regueiro, M., Hartman, D.J., Brand, R.E., & Liu, Y. (2019). Three-Dimensional Nanoscale Nuclear Architecture Mapping of Rectal Biopsies Detects Colorectal Neoplasia in Patients with Inflammatory Bowel Disease. Cancer Prev Res (Phila), 12(8), 527-538.American Association for Cancer Research (AACR). doi: 10.1158/1940-6207.CAPR-19-0024.

Xu, J., & Liu, Y. (2019). A guide to visualizing the spatial epigenome with super-resolution microscopy. FEBS J, 286(16), 3095-3109.Wiley. doi: 10.1111/febs.14938.

Xu, J., & Liu, Y. (2019). Imaging Higher-order Chromatin Structures in Single Cells Using Stochastic Optical Reconstruction Microscopy. Bio Protoc, 9(3), e3160.Bio-Protocol. doi: 10.21769/BioProtoc.3160.

Gao, Y., Tan, J., Jin, J., Ma, H., Chen, X., Leger, B., Xu, J., Spagnol, S.T., Dahl, K.N., Levine, A.S., Liu, Y., & Lan, L. (2018). SIRT6 facilitates directional telomere movement upon oxidative damage. Sci Rep, 8(1), 5407.Springer Nature. doi: 10.1038/s41598-018-23602-0.

Teng, Y., Yadav, T., Duan, M., Tan, J., Xiang, Y., Gao, B., Xu, J., Liang, Z., Liu, Y., Nakajima, S., Shi, Y., Levine, A.S., Zou, L., & Lan, L. (2018). ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat Commun, 9(1), 4115.Springer Nature. doi: 10.1038/s41467-018-06586-3.

Uttam, S., & Liu, Y. (2018). Fourier phase based depth-resolved nanoscale nuclear architecture mapping for cancer detection. Methods, 136, 134-151.Elsevier. doi: 10.1016/j.ymeth.2017.10.011.

Xu, J., Ma, H., Jin, J., Uttam, S., Fu, R., Huang, Y., & Liu, Y. (2018). Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells. Cell Rep, 24(4), 873-882.Elsevier. doi: 10.1016/j.celrep.2018.06.085.

Gao, Y., Li, C., Wei, L., Teng, Y., Nakajima, S., Chen, X., Xu, J., Leger, B., Ma, H., Spagnol, S.T., Wan, Y., Dahl, K.N., Liu, Y., Levine, A.S., & Lan, L. (2017). SSRP1 Cooperates with PARP and XRCC1 to Facilitate Single-Strand DNA Break Repair by Chromatin Priming. Cancer Res, 77(10), 2674-2685.American Association for Cancer Research (AACR). doi: 10.1158/0008-5472.CAN-16-3128.

Ma, H., Fu, R., Xu, J., & Liu, Y. (2017). A simple and cost-effective setup for super-resolution localization microscopy. Sci Rep, 7(1), 1542.Springer Nature. doi: 10.1038/s41598-017-01606-6.

Ma, H., Xu, J., Jin, J., Huang, Y., & Liu, Y. (2017). A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy. Biophys J, 112(10), 2196-2208.Elsevier. doi: 10.1016/j.bpj.2017.04.025.

Xu, J., Ma, H., & Liu, Y. (2017). Stochastic Optical Reconstruction Microscopy (STORM). Curr Protoc Cytom, 81(1), 12.46.1-12.46.27.Wiley. doi: 10.1002/cpcy.23.

Pham, H.V., Pantanowitz, L., & Liu, Y. (2016). Quantitative phase imaging to improve the diagnostic accuracy of urine cytology. Cancer Cytopathol, 124(9), 641-650.Wiley. doi: 10.1002/cncy.21734.

Del Portillo, A., Lagana, S.M., Yao, Y., Uehara, T., Jhala, N., Ganguly, T., Nagy, P., Gutierrez, J., Luna, A., Abrams, J., Liu, Y., Brand, R., Sepulveda, J.L., Falk, G.W., & Sepulveda, A.R. (2015). Evaluation of Mutational Testing of Preneoplastic Barrett's Mucosa by Next-Generation Sequencing of Formalin-Fixed, Paraffin-Embedded Endoscopic Samples for Detection of Concurrent Dysplasia and Adenocarcinoma in Barrett's Esophagus. J Mol Diagn, 17(4), 412-419.Elsevier. doi: 10.1016/j.jmoldx.2015.02.006.

Glassford, W.J., Johnson, W.C., Dall, N.R., Smith, S.J., Liu, Y., Boll, W., Noll, M., & Rebeiz, M. (2015). Co-option of an Ancestral Hox-Regulated Network Underlies a Recently Evolved Morphological Novelty. Dev Cell, 34(5), 520-531.Elsevier. doi: 10.1016/j.devcel.2015.08.005.

Ma, H., Xu, J., Jin, J., Gao, Y., Lan, L., & Liu, Y. (2015). Fast and Precise 3D Fluorophore Localization based on Gradient Fitting. Sci Rep, 5(1), 14335.Springer Nature. doi: 10.1038/srep14335.

Sun, L., Tan, R., Xu, J., LaFace, J., Gao, Y., Xiao, Y., Attar, M., Neumann, C., Li, G.M., Su, B., Liu, Y., Nakajima, S., Levine, A.S., & Lan, L. (2015). Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death. Nucleic Acids Res, 43(13), 6334-6347.Oxford University Press (OUP). doi: 10.1093/nar/gkv598.

Uttam, S., & Liu, Y. (2015). Fourier phase in Fourier-domain optical coherence tomography. J Opt Soc Am A Opt Image Sci Vis, 32(12), 2286-2306.Optica Publishing Group. doi: 10.1364/JOSAA.32.002286.

Uttam, S., Pham, H.V., LaFace, J., Leibowitz, B., Yu, J., Brand, R.E., Hartman, D.J., & Liu, Y. (2015). Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear Architecture from Unstained Tissue Specimens. Cancer Res, 75(22), 4718-4727.American Association for Cancer Research (AACR). doi: 10.1158/0008-5472.CAN-15-1274.

Hartman, D.J., Krasinskas, A.M., Uttam, S., Staton, K., Bista, R., I Ilyas, S., Slivka, A., Brand, R., & Liu, Y. (2014). Assessment of nuclear nanomorphology marker to improve the detection of malignancy from bile duct biopsy specimens. Am J Clin Pathol, 141(6), 884-891.Oxford University Press (OUP). doi: 10.1309/AJCPXQD0NSJNK0CX.

Liu, Y., Uttam, S., Alexandrov, S., & Bista, R.K. (2014). Investigation of nanoscale structural alterations of cell nucleus as an early sign of cancer. BMC Biophys, 7(1), 1.Springer Nature. doi: 10.1186/2046-1682-7-1.

Fasanella, K.E., Bista, R.K., Staton, K., Rizvi, S., Uttam, S., Zhao, C., Sepulveda, A., Brand, R.E., McGrath, K., & Liu, Y. (2013). Nuclear Nano-architecture Markers of Gastric Cardia and Upper Squamous Esophagus Detect Esophageal Cancer "Field Effect". J Cancer, 4(8), 626-634.Ivyspring International Publisher. doi: 10.7150/jca.6990.

Uttam, S., Alexandrov, S.A., Bista, R.K., & Liu, Y. (2013). Tomographic imaging via spectral encoding of spatial frequency. Opt Express, 21(6), 7488-7504.Optica Publishing Group. doi: 10.1364/OE.21.007488.

Uttam, S., Bista, R.K., Staton, K., Alexandrov, S., Choi, S., Bakkenist, C.J., Hartman, D.J., Brand, R.E., & Liu, Y. (2013). Erratum: Investigation of depth-resolved nanoscale structural changes in regulated cell proliferation and chromatin decondensation: erratum. Biomed Opt Express, 4(11), 2491.Optica Publishing Group. doi: 10.1364/BOE.4.002491.

Uttam, S., Bista, R.K., Staton, K., Alexandrov, S., Choi, S., Bakkenist, C.J., Hartman, D.J., Brand, R.E., & Liu, Y. (2013). Investigation of depth-resolved nanoscale structural changes in regulated cell proliferation and chromatin decondensation. Biomed Opt Express, 4(4), 596-613.Optica Publishing Group. doi: 10.1364/BOE.4.000596.

Wu, D., He, D., Qiu, J., Lin, R., & Liu, Y. (2013). Comparing social tags with subject headings on annotating books: A study comparing the information science domain in English and Chinese. JOURNAL OF INFORMATION SCIENCE, 39(2), 169-187.SAGE Publications. doi: 10.1177/0165551512451808.

Alexandrov, S.A., Uttam, S., Bista, R.K., Staton, K., & Liu, Y. (2012). Spectral encoding of spatial frequency approach for characterization of nanoscale structures. Appl Phys Lett, 101(3), 33702.AIP Publishing. doi: 10.1063/1.4737209.

Alexandrov, S.A., Uttam, S., Bista, R.K., Zhao, C., & Liu, Y. (2012). Real-time quantitative visualization of 3D structural information. Opt Express, 20(8), 9203-9214.Optica Publishing Group. doi: 10.1364/OE.20.009203.

Bista, R.K., Uttam, S., Hartman, D.J., Qiu, W., Yu, J., Zhang, L., Brand, R.E., & Liu, Y. (2012). Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model. J Biomed Opt, 17(6), 066014.SPIE, the international society for optics and photonics. doi: 10.1117/1.JBO.17.6.066014.

Bista, R.K., Wang, P., Bhargava, R., Uttam, S., Hartman, D.J., Brand, R.E., & Liu, Y. (2012). Nuclear nano-morphology markers of histologically normal cells detect the "field effect" of breast cancer. Breast Cancer Res Treat, 135(1), 115-124.Springer Nature. doi: 10.1007/s10549-012-2125-2.

Chen, Y., Liang, C.P., Liu, Y., Fischer, A.H., Parwani, A.V., & Pantanowitz, L. (2012). Review of advanced imaging techniques. J Pathol Inform, 3(1), 22.Elsevier. doi: 10.4103/2153-3539.96751.

Alexandrov, S.A., Uttam, S., Bista, R.K., & Liu, Y. (2011). Spectral contrast imaging microscopy. Opt Lett, 36(17), 3323-3325.Optica Publishing Group. doi: 10.1364/OL.36.003323.

Bista, R.K., Brentnall, T.A., Bronner, M.P., Langmead, C.J., Brand, R.E., & Liu, Y. (2011). Using optical markers of nondysplastic rectal epithelial cells to identify patients with ulcerative colitis-associated neoplasia. Inflamm Bowel Dis, 17(12), 2427-2435.Oxford University Press (OUP). doi: 10.1002/ibd.21639.

Bista, R.K., Uttam, S., Wang, P., Staton, K., Choi, S., Bakkenist, C.J., Hartman, D.J., Brand, R.E., & Liu, Y. (2011). Quantification of nanoscale nuclear refractive index changes during the cell cycle. J Biomed Opt, 16(7), 070503.SPIE, the international society for optics and photonics. doi: 10.1117/1.3597723.

Fang, C., Brokl, D., Brand, R.E., & Liu, Y. (2011). Depth-selective fiber-optic probe for characterization of superficial tissue at a constant physical depth. Biomed Opt Express, 2(4), 838-849.Optica Publishing Group. doi: 10.1364/BOE.2.000838.

Rizvi, S., Davison, J.M., Bista, R.K., Wang, P., Holinga, J., Staton, K.D., Hartman, D.I., Brand, R., Fasanella, K.E., Liu, Y., & McGrath, K. (2011). Nuclear Refractive Index Properties of Non-Dysplastic Metaplastic Cells to Detect the Presence of Esophageal High-Grade Dysplasia and Adenocarcinoma From Barrett's Esophagus. GASTROENTEROLOGY, 140, (p. S217).

Uttam, S., Bista, R.K., Hartman, D.J., Brand, R.E., & Liu, Y. (2011). Correction of stain variations in nuclear refractive index of clinical histology specimens. J Biomed Opt, 16(11), 116013.SPIE, the international society for optics and photonics. doi: 10.1117/1.3650306.

Mahmoud, B.H., Ruvolo, E., Hexsel, C.L., Liu, Y., Owen, M.R., Kollias, N., Lim, H.W., & Hamzavi, I.H. (2010). Impact of long-wavelength UVA and visible light on melanocompetent skin. J Invest Dermatol, 130(8), 2092-2097.Elsevier. doi: 10.1038/jid.2010.95.

Wang, P., Bista, R., Bhargava, R., Brand, R.E., & Liu, Y. (2010). Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis. Opt Lett, 35(17), 2840-2842.Optica Publishing Group. doi: 10.1364/OL.35.002840.

Wang, P., Bista, R.K., Khalbuss, W.E., Qiu, W., Uttam, S., Staton, K., Zhang, L., Brentnall, T.A., Brand, R.E., & Liu, Y. (2010). Nanoscale nuclear architecture for cancer diagnosis beyond pathology via spatial-domain low-coherence quantitative phase microscopy. J Biomed Opt, 15(6), 066028.SPIE, the international society for optics and photonics. doi: 10.1117/1.3523618.

Wang, P., Bista, R.K., Qiu, W., Khalbuss, W.E., Zhang, L., Brand, R.E., & Liu, Y. (2010). An insight into statistical refractive index properties of cell internal structure via low-coherence statistical amplitude microscopy. Opt Express, 18(21), 21950-21958.Optica Publishing Group. doi: 10.1364/OE.18.021950.

Backman, V., Subramanian, H., Pradhan, P., Liu, Y., Capoglu, I., Rogers, J.D., Roy, H.K., & Taflove, A. (2009). Detecting alterations in cell ultrastructure with optical imaging. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 6325-6326.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/IEMBS.2009.5333173.

Subramanian, H., Pradhan, P., Liu, Y., Capoglu, I.R., Rogers, J.D., Roy, H.K., Brand, R.E., & Backman, V. (2009). Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis. Opt Lett, 34(4), 518-520.Optica Publishing Group. doi: 10.1364/ol.34.000518.

Roy, H.K., Turzhitsky, V., Kim, Y.L., Goldberg, M.J., Muldoon, J.P., Liu, Y., Brand, R.E., Hall, C., Hasabou, N., Jameel, M., & Backman, V. (2008). Spectral slope from the endoscopically-normal mucosa predicts concurrent colonic neoplasia: a pilot ex-vivo clinical study. Dis Colon Rectum, 51(9), 1381-1386.Wolters Kluwer. doi: 10.1007/s10350-008-9384-3.

Subramanian, H., Pradhan, P., Liu, Y., Capoglu, I.R., Li, X., Rogers, J.D., Heifetz, A., Kunte, D., Roy, H.K., Taflove, A., & Backman, V. (2008). Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells. Proc Natl Acad Sci U S A, 105(51), 20118-20123.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.0804723105.

Turzhitsky, V., Liu, Y., Hasabou, N., Goldberg, M., Roy, H.K., Backman, V., & Brand, R. (2008). Investigating population risk factors of pancreatic cancer by evaluation of optical markers in the duodenal mucosa. Dis Markers, 25(6), 313-321.Wiley. doi: 10.1155/2008/958214.

Turzhitsky, V.M., Gomes, A.J., Kim, Y.L., Liu, Y., Kromine, A., Rogers, J.D., Jameel, M., Roy, H.K., & Backman, V. (2008). Measuring mucosal blood supply in vivo with a polarization-gating probe. Appl Opt, 47(32), 6046-6057.Optica Publishing Group. doi: 10.1364/ao.47.006046.

Allen, J., Liu, Y., Kim, Y.L., Turzhitsky, V.M., Backman, V., & Ameer, G.A. (2007). Spectroscopic translation of cell-material interactions. Biomaterials, 28(2), 162-174.Elsevier. doi: 10.1016/j.biomaterials.2006.07.002.

Figueiredo, R.J., Backman, V., Liu, Y., & Paladugula, J. (2007). Architecture and performance of a Grid-enabled lookup-based biomedical optimization application: light scattering spectroscopy. IEEE Trans Inf Technol Biomed, 11(2), 170-178.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/titb.2006.876032.

Liu, Y., Brand, R.E., Turzhitsky, V., Kim, Y.L., Roy, H.K., Hasabou, N., Sturgis, C., Shah, D., Hall, C., & Backman, V. (2007). Optical markers in duodenal mucosa predict the presence of pancreatic cancer. Clin Cancer Res, 13(15 Pt 1), 4392-4399.American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.CCR-06-1648.

Roy, H.K., Wali, R.K., Kim, Y., Liu, Y., Hart, J., Kunte, D.P., Koetsier, J.L., Goldberg, M.J., & Backman, V. (2007). Inducible nitric oxide synthase (iNOS) mediates the early increase of blood supply (EIBS) in colon carcinogenesis. FEBS Lett, 581(20), 3857-3862.Wiley. doi: 10.1016/j.febslet.2007.07.012.

Subramanian, H., Pradhan, P., Kim, Y.L., & Backman, V. (2007). Penetration depth of low-coherence enhanced backscattered light in subdiffusion regime. Phys Rev E Stat Nonlin Soft Matter Phys, 75(4 Pt 1), 041914.American Physical Society (APS). doi: 10.1103/PhysRevE.75.041914.

Gong, J., Liu, B., Kim, Y.L., Liu, Y., Li, X., & Backman, V. (2006). Optimal spectral reshaping for resolution improvement in optical coherence tomography. Opt Express, 14(13), 5909-5915.Optica Publishing Group. doi: 10.1364/oe.14.005909.

Kim, Y.L., Pradhan, P., Kim, M.H., & Backman, V. (2006). Circular polarization memory effect in low-coherence enhanced backscattering of light. Opt Lett, 31(18), 2744-2746.Optica Publishing Group. doi: 10.1364/ol.31.002744.

Kim, Y.L., Pradhan, P., Subramanian, H., Liu, Y., Kim, M.H., & Backman, V. (2006). Origin of low-coherence enhanced backscattering. Opt Lett, 31(10), 1459-1461.Optica Publishing Group. doi: 10.1364/ol.31.001459.

Kim, Y.L., Turzhitsky, V.M., Liu, Y., Roy, H.K., Wali, R.K., Subramanian, H., Pradhan, P., & Backman, V. (2006). Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening. J Biomed Opt, 11(4), 041125.SPIE, the international society for optics and photonics. doi: 10.1117/1.2236292.

Roy, H.K., Kim, Y.L., Liu, Y., Wali, R.K., Goldberg, M.J., Turzhitsky, V., Horwitz, J., & Backman, V. (2006). Risk stratification of colon carcinogenesis through enhanced backscattering spectroscopy analysis of the uninvolved colonic mucosa. Clin Cancer Res, 12(3 Pt 1), 961-968.American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.CCR-05-1605.

Roy, H.K., Kunte, D.P., Koetsier, J.L., Hart, J., Kim, Y.L., Liu, Y., Bissonnette, M., Goldberg, M., Backman, V., & Wali, R.K. (2006). Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of SNAIL/beta-catenin signaling. Mol Cancer Ther, 5(8), 2060-2069.American Association for Cancer Research (AACR). doi: 10.1158/1535-7163.MCT-06-0054.

Subramanian, H., Pradhan, P., Kim, Y.L., Liu, Y., Li, X., & Backman, V. (2006). Modeling low-coherence enhanced backscattering using Monte Carlo simulation. Appl Opt, 45(24), 6292-6300.Optica Publishing Group. doi: 10.1364/ao.45.006292.

Xia, X., Liu, Y., Backman, V., & Ameer, G.A. (2006). Engineering sub-100 nm multi-layer nanoshells. NANOTECHNOLOGY, 17(21), 5435-5440.IOP Publishing. doi: 10.1088/0957-4484/17/21/025.

Chen, K., Liu, Y., Ameer, G., & Backman, V. (2005). Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels. J Biomed Opt, 10(2), 024005.SPIE, the international society for optics and photonics. doi: 10.1117/1.1899684.

Kim, Y.L., Liu, Y., Turzhitsky, V.M., Wali, R.K., Roy, H.K., & Backman, V. (2005). Depth-resolved low-coherence enhanced backscattering. Opt Lett, 30(7), 741-743.Optica Publishing Group. doi: 10.1364/ol.30.000741.

Kim, Y.L., Liu, Y., Wali, R.K., Roy, H.K., & Backman, V. (2005). Low-coherent backscattering spectroscopy for tissue characterization. Appl Opt, 44(3), 366-377.Optica Publishing Group. doi: 10.1364/ao.44.000366.

Liu, Y., Kim, Y., Li, X., & Backman, V. (2005). Investigation of depth selectivity of polarization gating for tissue characterization. Opt Express, 13(2), 601-611.Optica Publishing Group. doi: 10.1364/opex.13.000601.

Liu, Y., Kim, Y.L., & Backman, V. (2005). Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating. Appl Opt, 44(12), 2288-2299.Optica Publishing Group. doi: 10.1364/ao.44.002288.

Liu, Y., Li, X., Kim, Y.L., & Backman, V. (2005). Elastic backscattering spectroscopic microscopy. Opt Lett, 30(18), 2445-2447.Optica Publishing Group. doi: 10.1364/ol.30.002445.

Roy, H.K., Kim, Y.L., Wali, R.K., Liu, Y., Koetsier, J., Kunte, D.P., Goldberg, M.J., & Backman, V. (2005). Spectral markers in preneoplastic intestinal mucosa: an accurate predictor of tumor risk in the MIN mouse. Cancer Epidemiol Biomarkers Prev, 14(7), 1639-1645.American Association for Cancer Research (AACR). doi: 10.1158/1055-9965.EPI-04-0837.

Wali, R.K., Roy, H.K., Kim, Y.L., Liu, Y., Koetsier, J.L., Kunte, D.P., Goldberg, M.J., Turzhitsky, V., & Backman, V. (2005). Increased microvascular blood content is an early event in colon carcinogenesis. Gut, 54(5), 654-660.BMJ. doi: 10.1136/gut.2004.056010.

Kim, Y., Liu, Y., & Backman, V. (2004). Coherent backscattering spectroscopy: a new technique for tissue diagnosis. Conf Proc IEEE Eng Med Biol Soc, 2004, 5285-5288.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/IEMBS.2004.1404476.

Kim, Y.L., Liu, Y., Turzhitsky, V.M., Roy, H.K., Wali, R.K., & Backman, V. (2004). Coherent backscattering spectroscopy. Opt Lett, 29(16), 1906-1908.Optica Publishing Group. doi: 10.1364/ol.29.001906.

Roy, H.K., Iversen, P., Hart, J., Liu, Y., Koetsier, J.L., Kim, Y., Kunte, D.P., Madugula, M., Backman, V., & Wali, R.K. (2004). Down-regulation of SNAIL suppresses MIN mouse tumorigenesis: modulation of apoptosis, proliferation, and fractal dimension. Mol Cancer Ther, 3(9), 1159-1165.American Association for Cancer Research (AACR). doi: 10.1158/1535-7163.1159.3.9.

Roy, H.K., Liu, Y., Wali, R.K., Kim, Y.L., Kromine, A.K., Goldberg, M.J., & Backman, V. (2004). Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis. Gastroenterology, 126(4), 1071-1081.Elsevier. doi: 10.1053/j.gastro.2004.01.009.

Kim, Y.L., Liu, Y., Wali, R.K., Roy, H.K., Goldberg, M.J., Kromin, A.K., Chen, K., & Backman, V. (2003). Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 9(2), 243-256.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2003.814183.

Zhu, X.Q., Cao, L., Liu, Y., Yang, Y., Lu, J.Y., Wang, J.S., & Cheng, J.P. (2003). Thermodynamics and kinetics of the hydride-transfer cycles for 1-aryl-1,4-dihydronicotinamide and its 1,2-dihydroisomer. Chemistry, 9(16), 3937-3945.Wiley. doi: 10.1002/chem.200304714.

Zhu, X., Liu, Y., Zhao, B., & Cheng, J. (2001). An old but simple and efficient method to elucidate the oxidation mechanism of NAD(P)H model by cations 2-methyl-5-nitroisoquinolium, tropylium, and xanthylium in aqueous solution. Journal of Organic Chemistry, 66(2), 370-375.

Zhu, X.Q., Zou, H.L., Yuan, P.W., Liu, Y., Cao, L., & Cheng, J.P. (2000). A detailed investigation into the oxidation mechanism of Hantzsch 1,4-dihydropyridines by ethyl α-cyanocinnamates and benzylidenemalononitriles. Journal of the Chemical Society, Perkin Transactions 2, 0(9), 1857-1861.Royal Society of Chemistry (RSC). doi: 10.1039/b003404p.

Zhu, X.Q., Zou, H.L., Yuan, P.W., Liu, Y., Cao, L., & Cheng, J.P. (2000). A detailed investigation into the oxidation mechanism of Hantzsch 1,4-dihydropyridines by ethyl α-cyanocinnamates and benzylidenemalononitriles. JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, (9), 1857-1861.Royal Society of Chemistry (RSC). doi: 10.1039/b003404p.

Liu, Y., Ma, H., & Xu, J. (2020). Visualizing cancer pathogenesis at the nanoscale. In Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), Part F177-Microscopy-2020, (p. mw1a.1).Optica Publishing Group. doi: 10.1364/microscopy.2020.mw1a.1.

Ma, H., Xu, J., & Liu, Y. (2019). Robust online image processing for high-throughput super-resolution localization microscopy. In Pavone, F.S., Beaurepaire, E., & So, P.T. (Eds.). In Progress in biomedical optics and imaging, 11076, (p. 1107603-1107603-3).SPIE, the international society for optics and photonics. doi: 10.1117/12.2526541.

Uttam, S., & Liu, Y. (2019). Three-dimensional nanoscale nuclear architecture mapping for improved cancer risk stratification. In Pavone, F.S., Beaurepaire, E., & So, P.T. (Eds.). In Progress in biomedical optics and imaging, 11076, (p. 1107611-1107611-3).SPIE, the international society for optics and photonics. doi: 10.1117/12.2526469.

Skoko, J., Asan, A., Woodcock, C., Cao, J., Gaboriau, D., Paulsen, C., Attar, M., Wingert, B., Woodcock, S., Schulte, J., Ma, H., Camacho, C., Liu, Y., Morrison, C., Carroll, K., Freeman, B., & Neumann, C. (2018). Loss of PRDX1 increases RAD51 Cys319 oxidation and decreases homologous recombination. In FREE RADICAL BIOLOGY AND MEDICINE, 128, (pp. S73-S74).Elsevier. doi: 10.1016/j.freeradbiomed.2018.10.159.

Skoko, J.J., Asan, A., Woodcock, C.S.C., Cao, J., Gaboriau, D., Paulsen, C.E., Attar, M., Wingert, B.M., Woodcock, S.R., Schulte, J., Ma, H., Camacho, C.J., Liu, Y., Morrison, C.G., Carroll, K., Freeman, B.A., & Neumann, C.A. (2017). Redox Regulation of RAD51 and Homologous Recombination by Peroxiredoxin 1 and Electrophilic Nitrofatty Acids. In FREE RADICAL BIOLOGY AND MEDICINE, 112, (pp. 100-101).Elsevier. doi: 10.1016/j.freeradbiomed.2017.10.151.

Ma, H., Xu, J., Jin, J., Gao, Y., Lan, L., & Liu, Y. (2016). Fast and precise 3D fluorophore localization by gradient fitting. In Enderlein, J., Gregor, I., Gryczynski, Z.K., Erdmann, R., & Koberling, F. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 9714, (p. 97140g-97140g-12).SPIE, the international society for optics and photonics. doi: 10.1117/12.2211731.

Uttam, S., & Liu, Y. (2016). Theory of Fourier phase within the framework of Fourier-domain optical coherence tomography. In Izatt, J.A., Fujimoto, J.G., & Tuchin, V.V. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 9697, (p. 96972s-96972s-6).SPIE, the international society for optics and photonics. doi: 10.1117/12.2214821.

Uttam, S., Pham, H.V., LaFace, J., Hartman, D.J., & Liu, Y. (2016). Depth-resolved nanoscale nuclear architecture mapping for early prediction of cancer progression. In Izatt, J.A., Fujimoto, J.G., & Tuchin, V.V. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 9697, (p. 969728-969728-7).SPIE, the international society for optics and photonics. doi: 10.1117/12.2214688.

Del Portillo, A., Yuan, Y., Uehara, T., Jhala, N., Ganguly, T., Lagana, S., Gutierrez-Pajares, J.L., Sepulveda, J.L., Liu, Y., Brand, R., Falk, G.W., & Sepulveda, A.R. (2014). Next-Generation Sequencing Mutational Analysis of Intestinal Metaplasia and Neoplastic Lesions in Barrett's Esophagus from Endoscopic Samples. In LABORATORY INVESTIGATION, 94, (p. 171A).

Del Portillo, A., Yuan, Y., Uehara, T., Jhala, N., Ganguly, T., Lagana, S., Quierrez-Pajares, J.L., Sepulveda, J.L., Liu, Y., Brand, R., Falk, G.W., & Sepulveda, A.R. (2014). Next-Generation Sequencing Mutational Analysis of Intestinal Metaplasia and Neoplastic Lesions in Barrett's Esophagus from Endoscopic Samples. In MODERN PATHOLOGY, 27, (p. 171A).

Li, Z., Bhargava, R., Staton, K., Wang, H., Uttam, S., Brand, R.E., Soran, A., Ahrendt, G.M., & Liu, Y. (2014). Nuclear Nano-Morphology Markers Predict Breast Cancer Risk in Patients with Atypical Breast Epithelial Hyperplasia. In MODERN PATHOLOGY, 27, (p. 64A).

Li, Z., Bhargava, R., Staton, K., Wang, H., Uttam, S., Brand, R.E., Soran, A., Ahrendt, G.M., & Liu, Y. (2014). Nuclear Nano-Morphology Markers Predict Breast Cancer Risk in Patients with Atypical Breast Epithelial Hyperplasia. In LABORATORY INVESTIGATION, 94, (p. 64A).

Hashash, J.G., Bista, R.K., Staton, K.D., Hartman, D.J., Alnabhan, S., Baidoo, L., Regueiro, M., Schwartz, M., Binion, D.G., Brand, R., & Liu, Y. (2013). Nuclear Nano-Morphology Markers From Rectal Tissue Predict Colonic Dysplasia/Neoplasia in Ulcerative Colitis Patients. In GASTROENTEROLOGY, 144(5), (pp. S175-S176).

Alexandrov, S.A., Uttam, S., Bista, R.K., & Liu, Y. (2012). Spectral encoding of spatial frequency approach for quantitative visualization and characterization of 3D structures. In Biomedical Optics and 3-D Imaging, (p. btu3a.57).Optica Publishing Group. doi: 10.1364/biomed.2012.btu3a.57.

Hashash, J.G., Bista, R.K., Hartman, D.J., Regueiro, M., Schwartz, M., Staton, K.D., Baidoo, L., Binion, D.G., Brand, R., & Liu, Y. (2012). Nuclear Nano-Morphology Markers From Rectal Tissue for the Surveillance of Colorectal Cancer in Patients With Ulcerative Colitis. In GASTROENTEROLOGY, 142(5), (pp. S538-S539).

Liu, Y., Alexandrov, S., Uttam, S., & Bista, R.K. (2012). Probing Cell Nanoscale Structural Properties Using Intrinsic Contrast of Light Scattering. In BIOPHYSICAL JOURNAL, 102(3), (p. 4A).Elsevier. doi: 10.1016/j.bpj.2011.11.039.

Brokl, D.A., Lo, D.Y., Khalbuss, W.E., Wang, P., Bista, R.K., Uttam, S., Liu, Y., & Brand, R. (2011). Spatial-Domain Low-Coherence Quantitative Phase Microscopy to Improve the Cytological Diagnosis of Pancreatic Cancer. In GASTROENTEROLOGY, 140(5), (p. S53).

Hashash, J.G., Bista, R.K., Hartman, D.J., Qiu, W., Wang, P., Zhang, L., Brand, R., & Liu, Y. (2011). Nuclear Refractive Index Detects the Field Effect of Carcinogenesis. In GASTROENTEROLOGY, 140(5), (p. S339).

Krasinskas, A.M., Bista, R.K., Rizvi, S., Hartman, D.J., Sanders, M., Gelrud, A., Slivka, A., Brand, R., & Liu, Y. (2011). Assessment of Nuclear Refractive Index to Improve the Diagnostic Accuracy of Cholangiocarcinoma of Bile Duct Biopsies. In GASTROENTEROLOGY, 140(5), (p. S68).

Wang, P., Bista, R., Bhargava, R., Brand, R.E., & Liu, Y. (2011). Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis. In Fujimoto, J.G., Izatt, J.A., & Tuchin, V.V. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 7889, (p. 78891q-78891q-6).SPIE, the international society for optics and photonics. doi: 10.1117/12.873620.

Wang, P., Bista, R.K., Khalbuss, W.E., Qiu, W., Staton, K.D., Zhang, L., Brentnall, T.A., Brand, R.E., & Liu, Y. (2011). Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy. Poster session presented at the meeting of Biomedical Applications of Light Scattering V.Baltimore, MD.

Lo, D., Liu, Y., Khalbuss, W., Wang, P., & Brand, R. (2009). Using Novel Optical Technology to Improve the Cytological Diagnosis of Pancreatic Cancer. In AMERICAN JOURNAL OF GASTROENTEROLOGY, 104, (pp. S77-S78).Wolters Kluwer. doi: 10.14309/00000434-200910003-00199.

Backman, V., Subramanian, H., Pradhan, P., Liu, Y., Capoglu, I., & Rogers, J. (2008). Detecting alterations in cell nanoarchitecture with optical imaging: Implications for cancer detection. In Optics InfoBase Conference Papers.

Subramanian, H., Brand, R., Deep, P.P.N., Parikh, V., Hasabou, N., Polidoro, D., Sturgis, C., & Backman, V. (2007). Pilot study determining the feasibility of diagnosing pancreatic cancer using single cell partial wave spectroscopy of the duodenal mucosa. In PANCREAS, 35(4), (pp. 429-430).Wolters Kluwer. doi: 10.1097/01.mpa.0000297793.78884.bb.

Backman, V., Liu, Y., Pradhan, P., Kim, Y.L., Li, X., Taflove, A., Roy, H.K., & Brand, R. (2006). SINGLE CELL PARTIAL WAVE SPECTROSCOPY: UNDERSTANDING ALTERATIONS OF INTRACELLULAR NANOARCHITECTURE IN CANCER. In Optics InfoBase Conference Papers, (p. ftuq2).Optica Publishing Group. doi: 10.1364/fio.2006.ftuq2.

Backman, V., Liu, Y., Pradhan, P., Kim, Y.L., Li, X., Taflove, A., Roy, H.K., & Brand, R. (2006). SINGLE CELL PARTIAL WAVE SPECTROSCOPY: UNDERSTANDING ALTERATIONS OF INTRACELLULAR NANOARCHITECTURE IN CANCER. In Frontiers in Optics, (p. FTuQ2).OSA. doi: 10.1364/fio.2006.ftuq2.

Brand, R., Liu, Y., Sturgis, C., Hasabou, N., Regner, M., Yoon, H., & Backman, V. (2006). Feasibility of using biophotonics to assist in cytologic diagnosis of pancreatic cancer. In PANCREAS, 33(4), (p. 449).Wolters Kluwer. doi: 10.1097/00006676-200611000-00048.

Kim, Y.L., Liu, Y., Turzhitsky, V.M., Wali, R.K., Roy, H.K., & Backman, V. (2006). Risk stratification of colon cancer using low-coherence enhanced backscattering spectroscopy. In Optics InfoBase Conference Papers.

Kim, Y.L., Pradhan, P., Subramanian, H., Liu, Y., Kim, M.H., & Backman, V. (2006). Minimal scattering events in enhanced backscattering (EBS) of light: Origin of low-coherence EBS in discrete tissue models. In Optics InfoBase Conference Papers.

Kim, Y.L., Pradhan, P., Subramanian, H., Liu, Y., Kim, M.H., & Backman, V. (2006). Probing minimal scattering events in coherent backscattering of light using low-coherence induced dephasing. In Optics InfoBase Conference Papers.

Liu, Y., Pradhan, P., Li, X., Kim, Y.L., Wali, R.K., Roy, H.K., & Backman, V. (2006). Partial-wave spectroscopy to detect the initial stage of colon carcinogenesis. In Optics InfoBase Conference Papers.

Subramanian, H., Pradhan, P., Kim, Y.L., Liu, Y., & Backman, V. (2006). Monte carlo model of low-coherence enhanced backscattering (LEBS) from anisotropic disordered media. In Optics InfoBase Conference Papers.

Kim, Y.L., Liu, Y., Turzhitsky, V., Wali, R.K., Roy, H.K., & Backman, V. (2005). Low-coherence enhanced backscattering (LEBS) for colon cancer screening. In Optics InfoBase Conference Papers.

Horwitz, J., Cohen, E., Goldberg, M.J., Pema, M., Chang, S.Y., Kim, Y., Liu, Y., Master, S., Elton, E., Roy, H.K., & Backman, V. (2004). Micro-architectural alterations in endoscopically-normal mucosa provides accurate risk stratification for colorectal neoplasia. In AMERICAN JOURNAL OF GASTROENTEROLOGY, 99(10), (p. S326).Wolters Kluwer. doi: 10.14309/00000434-200410001-00987.

Yang, J., Liu, Y., Backman, V., Webb, A.R., Pickerill, S.J., & Ameer, G.A. (2004). Novel optical technique for the characterization of materials. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 227, (p. U126).

Chen, Y., Kim, Y.L., Kromin, A., Liu, Y., Wessels, B., Ulmer, M., & Backman, V. (2003). Determination of nano-sphere sizes using UV light scattering spectroscopy beyond the diffraction limit. In LASERS IN SURGERY AND MEDICINE, (p. 14).

Kim, Y.L., Liu, K., Wali, R.K., Roy, H.K., Goldberg, M.J., Kromine, A.K., Chen, K., & Backman, V. (2003). Detection of the initial stages of colorectal carcinogenesis using polarization light scattering spectroscopy with multivariate statistical analysis. In LASERS IN SURGERY AND MEDICINE, (p. 13).

Liu, Y., Kim, Y.L., Wali, R.K., Roy, H.K., Goldberg, M.J., Kromine, A.K., Chen, K., & Backman, V. (2003). Characterization of increased mucosal blood flow as an early marker of colon carcinogenesis using polarization light scattering spectroscopy. In LASERS IN SURGERY AND MEDICINE, (p. 14).

Research interests

biomedical optics
cancer detection
fourier optics
light scattering
optical microscopy
super-resolution imaging