headshot of Bob Nishikawa

Bob Nishikawa

Professor

about

Wu, C.C., D'Ardenne, N.M., Nishikawa, R.M., & Wolfe, J.M. (2020). Gist processing in digital breast tomosynthesis. JOURNAL OF MEDICAL IMAGING, 7(2), 022403.SPIE, the international society for optics and photonics. doi: 10.1117/1.JMI.7.2.022403.

de Cea, M.V.S., Nishikawa, R.M., & Yang, Y. (2018). Locally adaptive decision in detection of clustered microcalcifications in mammograms. PHYSICS IN MEDICINE AND BIOLOGY, 63(4), 045014.IOP Publishing. doi: 10.1088/1361-6560/aaaa4c.

Lee, J., & Nishikawa, R.M. (2018). Automated mammographic breast density estimation using a fully convolutional network. MEDICAL PHYSICS, 45(3), 1178-1190.Wiley. doi: 10.1002/mp.12763.

Lee, J., Nishikawa, R.M., Reiser, I., & Boone, J.M. (2018). Neutrosophic segmentation of breast lesions for dedicated breast computed tomography. Journal of Medical Imaging, 5(1), 014505.SPIE, the international society for optics and photonics. doi: 10.1117/1.jmi.5.1.014505.

Nishikawa, R.M., & Bae, K.T. (2018). Importance of Better Human-Computer Interaction in the Era of Deep Learning: Mammography Computer-Aided Diagnosis as a Use Case. JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 15(1), 49-52.Elsevier. doi: 10.1016/j.jacr.2017.08.027.

Chakraborty, D.P., Nishikawa, R.M., & Orton, C.G. (2017). Due to potential concerns of bias and conflicts of interest, regulatory bodies should not do evaluation methodology research related to their regulatory missions. MEDICAL PHYSICS, 44(9), 4403-4406.Wiley. doi: 10.1002/mp.12373.

de Cea, M.V.S., Nishikawa, R.M., & Yang, Y. (2017). Estimating the Accuracy Level Among Individual Detections in Clustered Microcalcifications. IEEE TRANSACTIONS ON MEDICAL IMAGING, 36(5), 1162-1171.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TMI.2017.2654799.

Lee, J., Nishikawa, R.M., Reiser, I., & Boone, J.M. (2017). Optimal reconstruction and quantitative image features for computer-aided diagnosis tools for breast CT. MEDICAL PHYSICS, 44(5), 1846-1856.Wiley. doi: 10.1002/mp.12214.

Lee, J., Nishikawa, R.M., Reiser, I., Zuley, M.L., & Boone, J.M. (2017). Lack of agreement between radiologists: implications for image-based model observers. Journal of Medical Imaging, 4(2), 025502.SPIE, the international society for optics and photonics. doi: 10.1117/1.jmi.4.2.025502.

Wang, J., Nishikawa, R.M., & Yang, Y. (2017). Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography. MEDICAL PHYSICS, 44(7), 3726-3738.Wiley. doi: 10.1002/mp.12316.

Wang, J., Nishikawa, R.M., & Yang, Y. (2017). Global detection approach for clustered microcalcifications in mammograms using a deep learning network. Journal of Medical Imaging, 4(2), 024501.SPIE, the international society for optics and photonics. doi: 10.1117/1.jmi.4.2.024501.

Reiser, I., Lau, B., & Nishikawa, R.M. (2016). Tomosynthesis system modeling. In Tomosynthesis Imaging. (pp. 81-97).

Wang, J., Nishikawa, R.M., & Yang, Y. (2016). Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model. MEDICAL PHYSICS, 43(1), 159-170.Wiley. doi: 10.1118/1.4938059.

Wu, S., Berg, W.A., Zuley, M.L., Kurland, B.F., Jankowitz, R.C., Nishikawa, R., Gur, D., & Sumkin, J.H. (2016). Breast MRI contrast enhancement kinetics of normal parenchyma correlate with presence of breast cancer. BREAST CANCER RESEARCH, 18(1), 76.Springer Nature. doi: 10.1186/s13058-016-0734-0.

de Sisternes, L., Brankov, J.G., Zysk, A.M., Schmidt, R.A., Nishikawa, R.M., & Wernick, M.N. (2015). A computational model to generate simulated three-dimensional breast masses. MEDICAL PHYSICS, 42(2), 1098-1118.Wiley. doi: 10.1118/1.4905232.

Gur, D., Nishikawa, R.M., & Sumkin, J.H. (2015). New Screening Technologies and Practices: A Different Approach to Estimation of Performance Improvement by Using Data from the Transition Period. RADIOLOGY, 275(1), 9-12.Radiological Society of North America (RSNA). doi: 10.1148/radiol.14141843.

Lee, J., Nishikawa, R.M., Reiser, I., Boone, J.M., & Lindfors, K.K. (2015). Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT. MEDICAL PHYSICS, 42(9), 5479-5489.Wiley. doi: 10.1118/1.4928479.

Tanaka, R., Takamori, M., Uchiyama, Y., Nishikawa, R.M., & Shiraishi, J. (2015). Using breast radiographers' reports as a second opinion for radiologists' readings of microcalcifications in digital mammography. BRITISH JOURNAL OF RADIOLOGY, 88(1047), 20140565.Oxford University Press (OUP). doi: 10.1259/bjr.20140565.

Nishikawa, R.M., & Gur, D. (2014). CADe for Early Detection of Breast Cancer - Current Status and Why We Need to Continue to Explore New Approaches. ACADEMIC RADIOLOGY, 21(10), 1320-1321.Elsevier. doi: 10.1016/j.acra.2014.05.018.

Wang, J., Jing, H., Wernick, M.N., Nishikawa, R.M., & Yang, Y. (2014). Analysis of perceived similarity between pairs of microcalcification clusters in mammograms. MEDICAL PHYSICS, 41(5), 051904.Wiley. doi: 10.1118/1.4870959.

Altman, M.B., Flynn, M.J., Nishikawa, R.M., Chetty, I.J., Barton, K.N., Movsas, B., Kim, J.H., & Brown, S.L. (2013). The potential of iodine for improving breast cancer diagnosis and treatment. MEDICAL HYPOTHESES, 80(1), 94-98.Elsevier. doi: 10.1016/j.mehy.2012.10.018.

Chen, X., Nishikawa, R.M., Chan, S.T., Lau, B.A., Zhang, L., & Mou, X. (2013). Algorithmic scatter correction in dual-energy digital mammography. MEDICAL PHYSICS, 40(11), 111919.Wiley. doi: 10.1118/1.4826173.

D'Orsi, C.J., Getty, D.J., Pickett, R.M., Sechopoulos, I., Newell, M.S., Gundry, K.R., Bates, S.R., Nishikawa, R.M., Sickles, E.A., Karellas, A., & D'Orsi, E.M. (2013). Stereoscopic Digital Mammography: Improved Specificity and Reduced Rate of Recall in a Prospective Clinical Trial. RADIOLOGY, 266(1), 81-88.Radiological Society of North America (RSNA). doi: 10.1148/radiol.12120382.

Nishikawa, R.M. (2013). Computer-aided Detection of Masses at Mammography: Interactive Decision Support Versus Prompts Hupse R, Samulski M, Lobbes MB, et al (Radboud Univ Nijmegen Med Centre, the Netherlands; Maastricht Univ Med Ctr, the Netherlands; et al) Radiology 266:123-129, 2013§. Breast Diseases A Year Book Quarterly, 24(3), 227-228.Elsevier. doi: 10.1016/j.breastdis.2013.07.023.

Nishikawa, R.M., & Pesce, L.L. (2013). Estimating Sensitivity and Specificity for Technology Assessment Based on Observer Studies. ACADEMIC RADIOLOGY, 20(7), 825-830.Elsevier. doi: 10.1016/j.acra.2013.03.008.

Reiser, I., Edwards, A., & Nishikawa, R.M. (2013). Validation of a power-law noise model for simulating small-scale breast tissue. PHYSICS IN MEDICINE AND BIOLOGY, 58(17), 6011-6027.IOP Publishing. doi: 10.1088/0031-9155/58/17/6011.

Cole, E.B., Zhang, Z., Marques, H.S., Nishikawa, R.M., Hendrick, R.E., Yaffe, M.J., Padungchaichote, W., Kuzmiak, C., Chayakulkheeree, J., Conant, E.F., Fajardo, L.L., Baum, J., Gatsonis, C., & Pisano, E. (2012). Assessing the Stand-Alone Sensitivity of Computer-Aided Detection With Cancer Cases From the Digital Mammographic Imaging Screening Trial. AMERICAN JOURNAL OF ROENTGENOLOGY, 199(3), W392-W401.American Roentgen Ray Society. doi: 10.2214/AJR.11.7255.

Jing, H., Yang, Y., & Nishikawa, R.M. (2012). Regularization in Retrieval‐Driven Classification of Clustered Microcalcifications for Breast Cancer. International Journal of Biomedical Imaging, 2012(1), 463408.Hindawi. doi: 10.1155/2012/463408.

Jing, H., Yang, Y., & Nishikawa, R.M. (2012). Retrieval boosted computer-aided diagnosis of clustered microcalcifications for breast cancer. MEDICAL PHYSICS, 39(2), 676-685.Wiley. doi: 10.1118/1.3675600.

Jing, H., Yang, Y., Wernick, M.N., Yarusso, L.M., & Nishikawa, R.M. (2012). A comparison study of image features between FFDM and film mammogram images. MEDICAL PHYSICS, 39(7), 4386-4394.Wiley. doi: 10.1118/1.4729740.

Lau, B.A., Reiser, I., Nishikawa, R.M., & Bakic, P.R. (2012). A statistically defined anthropomorphic software breast phantom. MEDICAL PHYSICS, 39(6), 3375-3385.Wiley. doi: 10.1118/1.4718576.

Nishikawa, R.M., Fenton, J.J., & Orton, C.G. (2012). Computer-aided detection should be used routinely to assist screening mammogram interpretation. MEDICAL PHYSICS, 39(9), 5305-5307.Wiley. doi: 10.1118/1.3694117.

Nishikawa, R.M., Giger, M.L., Jiang, Y., & Metz, C.E. (2012). Re: Effectiveness of Computer-Aided Detection in Community Mammography Practice. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 104(1), 77.Oxford University Press (OUP). doi: 10.1093/jnci/djr491.

Nishikawa, R.M., Schmidt, R.A., Linver, M.N., Edwards, A.V., Papaioannou, J., & Stull, M.A. (2012). Clinically Missed Cancer: How Effectively Can Radiologists Use Computer-Aided Detection?. AMERICAN JOURNAL OF ROENTGENOLOGY, 198(3), 708-716.American Roentgen Ray Society. doi: 10.2214/AJR.11.6423.

Reiser, I., Nishikawa, R.M., Giger, M.L., Boone, J.M., Lindfors, K.K., & Yang, K. (2012). Automated detection of mass lesions in dedicated breast CT: A preliminary study. MEDICAL PHYSICS, 39(2), 866-873.Wiley. doi: 10.1118/1.3678991.

Jing, H., Yang, Y., & Nishikawa, R.M. (2011). Detection of clustered microcalcifications using spatial point process modeling. PHYSICS IN MEDICINE AND BIOLOGY, 56(1), 1-17.IOP Publishing. doi: 10.1088/0031-9155/56/1/001.

Nishikawa, R.M. (2011). Mammographic Features of Breast Cancers at Single Reading with Computer-aided Detection and at Double Reading in a Large Multicenter Prospective Trial of Computer-aided Detection: CADET II James JJ, Gilbert FJ, Wallis MG, et al (Univ of Aberdeen, Scotland) Radiology 256:379-386, 2010§. Breast Diseases A Year Book Quarterly, 22(2), 139-140.Elsevier. doi: 10.1016/j.breastdis.2011.03.030.

Nishikawa, R.M., & Pesce, L.L. (2011). Fundamental limitations in developing computer-aided detection for mammography. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 648(SUPPL. 1), S251-S254.Elsevier. doi: 10.1016/j.nima.2010.11.086.

Reiser, I., Lee, S., & Nishikawa, R.M. (2011). On the orientation of mammographic structure. MEDICAL PHYSICS, 38(10), 5303-5306.Wiley. doi: 10.1118/1.3633905.

Lubinsky, A.R., Johnson, J.A., Schweizer, S., Weber, J.K.R., Nishikawa, R.M., Domenicali, P., & Fantone, S.D. (2010). Scanning translucent glass-ceramic x-ray storage phosphors. Proceedings of SPIE--the International Society for Optical Engineering, 7622(PART 3), 76223w-76223w-8.SPIE, the international society for optics and photonics. doi: 10.1117/12.843346.

Oto, A., Kulkarni, K., Nishikawa, R., & Baron, R.L. (2010). Contrast enhancement of hepatic hemangiomas on multiphase MDCT: Can we diagnose hepatic hemangiomas by comparing enhancement with blood pool?. American Journal of Roentgenology, 195(2), 381-386.American Roentgen Ray Society. doi: 10.2214/ajr.09.3324.

Reiser, I., & Nishikawa, R.M. (2010). Task-based assessment of breast tomosynthesis: Effect of acquisition parameters and quantum noise. MEDICAL PHYSICS, 37(4), 1591-1600.Wiley. doi: 10.1118/1.3357288.

Engstrom, E., Reiser, I., & Nishikawa, R. (2009). Comparison of power spectra for tomosynthesis projections and reconstructed images. Medical Physics, 36(5), 1753-1758.Wiley. doi: 10.1118/1.3116774.

Nishikawa, R.M., & Pesce, L.L. (2009). Computer-aided Detection Evaluation Methods Are Not Created Equal. RADIOLOGY, 251(3), 634-636.Radiological Society of North America (RSNA). doi: 10.1148/radiol.2513081130.

Nishikawa, R.M., Acharyya, S., Gatsonis, C., Pisano, E.D., Cole, E.B., Marques, H.S., D'Orsi, C.J., Farria, D.M., Kanal, K.M., Mahoney, M.C., Rebner, M., & Staiger, M.J. (2009). Comparison of Soft-copy and Hard-copy Reading for Full-Field Digital Mammography. RADIOLOGY, 251(1), 41-49.Radiological Society of North America (RSNA). doi: 10.1148/radiol.2511071462.

Sidky, E.Y., Pan, X., Reiser, I.S., Nishikawa, R.M., Moore, R.H., & Kopans, D.B. (2009). Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms. MEDICAL PHYSICS, 36(11), 4920-4932.Wiley. doi: 10.1118/1.3232211.

Wei, L., Yang, Y., & Nishikawa, R.M. (2009). Microcalcification classification assisted by content-based image retrieval for breast cancer diagnosis. PATTERN RECOGNITION, 42(6), 1126-1132.Elsevier. doi: 10.1016/j.patcog.2008.08.028.

Wei, L., Yang, Y., Wernick, M.N., & Nishikawa, R.M. (2009). Learning of Perceptual Similarity From Expert Readers for Mammogram Retrieval. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 3(1), 53-61.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTSP.2008.2011159.

Reiser, I., Nishikawa, R.M., Edwards, A.V., Kopans, D.B., Schmidt, R.A., Papaioannou, J., & Moore, R.H. (2008). Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: A preliminary study. MEDICAL PHYSICS, 35(4), 1486-1493.Wiley. doi: 10.1118/1.2885366.

Nishikawa, R.M. (2007). Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics, 31(4-5), 224-235.Elsevier. doi: 10.1016/j.compmedimag.2007.02.009.

Nishikawa, R.M., Schmidt, R.A., & Metz, C.E. (2007). Computer-aided screening mammography. NEW ENGLAND JOURNAL OF MEDICINE, 357(1), 84.

Rana, R.S., Jiang, Y., Schmidt, R.A., & Nishikawa, R.M. (2007). Independent evaluation of computer classification of malignant and benign calcifications in full-field digital mammograms. ACADEMIC RADIOLOGY, 14(3), 363-370.Elsevier. doi: 10.1016/j.acra.2006.12.012.

Chen, G., Johnson, J., Weber, R., Nishikawa, R., Schweizer, S., Newman, P., & MacFarlane, D. (2006). Fluorozirconate-based nanophase glass ceramics for high-resolution medical X-ray imaging. Journal of Non-Crystalline Solids, 352(6-7), 610-614.Elsevier. doi: 10.1016/j.jnoncrysol.2005.11.048.

Jiang, Y., Metz, C.E., Nishikawa, R.M., & Schmidt, R.A. (2006). Comparison of Independent Double Readings and Computer-Aided Diagnosis (CAD) for the Diagnosis of Breast Calcifications. Academic Radiology, 13(4), 534-535.Elsevier. doi: 10.1016/j.acra.2006.02.048.

Jiang, Y.L., Metz, C.E., Nishikawa, R.M., & Schmidt, R.A. (2006). Comparison of independent double readings and computer-aided diagnosis (CAD) for the diagnosis of breast calcifications. ACADEMIC RADIOLOGY, 13(1), 84-94.Elsevier. doi: 10.1016/j.acra.2005.09.086.

Nishikawa, R.M., Edwards, A.V., Schmidt, R.A., Papaioannou, J., & Linver, M.N. (2006). Measuring radiologists' ability to recognized correct computer prompts. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 1(SUPPL. 7), 329-330.

Nishikawa, R.M., Kallergi, M., & Orton, C.G. (2006). Computer-aided detection, in its present form, is not an effective aid for screening mammography. MEDICAL PHYSICS, 33(4), 811-814.Wiley. doi: 10.1118/1.2168063.

Reiser, I., & Nishikawa, R.M. (2006). Identification of simulated microcalcifications in white noise and mammographic backgrounds. MEDICAL PHYSICS, 33(8), 2905-2911.Wiley. doi: 10.1118/1.2210566.

Reiser, I., Nishikawa, R.M., Giger, M.L., Wu, T., Rafferty, E.A., Moore, R., & Kopans, D.B. (2006). Computerized mass detection for digital breast tomosynthesis directly from the projection images. MEDICAL PHYSICS, 33(2), 482-491.Wiley. doi: 10.1118/1.2163390.

Suri, J.S., Rangayyan, R.M., Reiser, I., & Nishikawa, R. (2006). Computerized Mass Detection for Digital Breast Tomosynthesis. In Recent Advances in Breast Imaging, Mammography, and Computer-Aided Diagnosis of Breast Cancer. (pp. 409-428).SPIE, the international society for optics and photonics. doi: 10.1117/3.651880.ch12.

Suri, J.S., Rangayyan, R.M., Suri, J., Chandrasekhar, R., Lanconelli, N., Campanini, R., Roffilli, M., Chang, R.F., Guo, Y., Sivaramakrishna, R., Tot, T., Acha, B., Serrano, C., Reiser, I., Nishikawa, R., Wu, D., Wong, K.P., Kshirsagar, A., Sun, Y., Wirth, M., Cao, A., Desautels, J.E., & Rangayyan, R. (2006). The Current Status and Likely Future of Breast Imaging CAD. In Recent Advances in Breast Imaging, Mammography, and Computer-Aided Diagnosis of Breast Cancer. (pp. 901-961).SPIE, the international society for optics and photonics. doi: 10.1117/3.651880.ch28.

Edwards*, D.C., Metz, C.E., & Nishikawa, R.M. (2005). The Hypervolume Under the Roc Hypersurface of “Near-Guessing” and “Near-Perfect” Observers in $N$-Class Classification Tasks. IEEE Transactions on Medical Imaging, 24(3), 293-299.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/tmi.2004.841227.

Nishikawa, R. (2005). TU‐D‐I‐609‐02: What to Expect When CAD Is Implemented Clinically. Medical Physics, 32(6Part16), 2093-2094.Wiley. doi: 10.1118/1.1999708.

Nishikawa, R. (2005). TU‐D‐I‐609‐01: Overview. Medical Physics, 32(6Part16), 2093.Wiley. doi: 10.1118/1.1998388.

Reiser, I., Nishikawa, R., Giger, M., Rafferty, E., Moore, R., Kopans, D., & Wu, T. (2005). SU‐EE‐A2‐02: Efficient Automatic Pre‐Selection of Mass Lesion Candidates in DBT Breast Volumes. Medical Physics, 32(6Part2), 1897.Wiley. doi: 10.1118/1.1997454.

Reiser, I., Nishikawa, R.M., Giger, M.L., Kopans, D.B., Rafferty, E.A., Wu, T., & Moore, R. (2005). A multi-scale 3D radial gradient filter for computerized mass detection in digital tomosynthesis breast images. International Congress Series, 1281, 1058-1062.Elsevier. doi: 10.1016/j.ics.2005.03.171.

Wei, L., Yang, Y., Nishikawa, R.M., & Jiang, Y. (2005). A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications. IEEE Transactions on Medical Imaging, 24(3), 371-380.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/tmi.2004.842457.

Wei, L.Y., Yang, Y.Y., Nishikawa, R.M., Wernick, M.N., & Edwards, A. (2005). Relevance vector machine for automatic detection of clustered microcalcifications. IEEE TRANSACTIONS ON MEDICAL IMAGING, 24(10), 1278-1285.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TMI.2005.855435.

Edwards, D.C., Lan, L., Metz, C.E., Giger, M.L., & Nishikawa, R.M. (2004). Estimating three-class ideal observer decision variables for computerized detection and classification of mammographic mass lesions. MEDICAL PHYSICS, 31(1), 81-90.Wiley. doi: 10.1118/1.1631912.

El-Naqa, I., Yang, Y.Y., Galatsanos, N.P., Nishikawa, R.M., & Wernick, M.N. (2004). A similarity learning approach to content-based image retrieval: Application to digital mammography. IEEE TRANSACTIONS ON MEDICAL IMAGING, 23(10), 1233-1244.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TMI.2004.834601.

Paquerault, S., Yarusso, L.M., Papaioannou, J., Jiang, Y.L., & Nishikawa, R.M. (2004). Radial gradient-based segmentation of mammographic microcalcifications: Observer evaluation and effect on CAD performance. MEDICAL PHYSICS, 31(9), 2648-2657.Wiley. doi: 10.1118/1.1767692.

Reiser, I., Nishikawa, R.M., Giger, M.L., Wu, T., Rafferty, E., Moore, R.H., & Kopans, D.B. (2004). Computerized detection of mass lesions in digital breast tomosynthesis images using two- and three dimensional radial gradient index segmentation. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 3(5), 437-441.SAGE Publications. doi: 10.1177/153303460400300504.

Wilkie, J.R., Giger, M.L., Chinander, M.R., Vokes, T.J., Nishikawa, R.M., & Carlin, M.D. (2004). Investigation of physical image quality indices of a bone densitometry system. MEDICAL PHYSICS, 31(4), 873-881.Wiley. doi: 10.1118/1.1650528.

Zhang, Y., & Nishikawa, R.M. (2004). Computer simulation of mammographic imaging for applications in CAD. International Congress Series, 1268(C), 890-895.Elsevier. doi: 10.1016/j.ics.2004.03.222.

Salfity, M.F., Nishikawa, R.M., Jiang, Y.L., & Papaioannou, J. (2003). The use of a priori information in the detection of mammographic microcalcifications to improve their classification. MEDICAL PHYSICS, 30(5), 823-831.Wiley. doi: 10.1118/1.1559884.

Beiden, S.V., Wagner, R.F., Doi, K., Nishikawa, R.M., Freedman, M., Ben Lo, S.C., & Xu, X.W. (2002). Independent versus sequential reading in ROC studies of computer-assist modalities: Analysis of components of variance. ACADEMIC RADIOLOGY, 9(9), 1036-1043.Elsevier. doi: 10.1016/S1076-6332(03)80479-8.

Edwards, D.C., Kupinski, M.A., Metz, C.E., & Nishikawa, R.M. (2002). Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. MEDICAL PHYSICS, 29(12), 2861-2870.Wiley. doi: 10.1118/1.1524631.

El-Naqa, I., Yang, Y.Y., Wernick, M.N., Galatsanos, N.P., & Nishikawa, R.M. (2002). A support vector machine approach for detection of microcalcifications. IEEE TRANSACTIONS ON MEDICAL IMAGING, 21(12), 1552-1563.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TMI.2002.806569.

Nishikawa, R. (2002). Assessment of the performance of computer-aided diagnosis and computer-aided diagnosis systems. Seminars in Breast Disease, 5(4), 217-222.

Jiang, Y.L., Nishikawa, R.M., & Papaioannou, J. (2001). Dependence of computer classification of clustered microcalcifications on the correct detection of microcalcifications. MEDICAL PHYSICS, 28(9), 1949-1957.Wiley. doi: 10.1118/1.1397715.

Jiang, Y.L., Nishikawa, R.M., Schmidt, R.A., Toledano, A.Y., & Doi, K. (2001). Potential of computer-aided diagnosis to reduce variability in radiologists' interpretations of mammograms depicting microcalcifications. RADIOLOGY, 220(3), 787-794.Radiological Society of North America (RSNA). doi: 10.1148/radiol.220001257.

Nishikawa, R.M. (2001). Evaluation of computer-aided detection and computer detection systems. Applied Radiology, 30(11 SUPPL.), 14-16.

Pisano, E.D., Cole, E.B., Major, S., Zong, S.Q., Hemminger, B.M., Muller, K.E., Johnston, R.E., Walsh, R., Conant, E., Fajardo, L.L., Feig, S.A., Nishikawa, R.M., Yaffe, M.J., Williams, M.B., & Aylward, S.R. (2000). Radiologists' preferences for digital mammographic display. RADIOLOGY, 216(3), 820-830.Radiological Society of North America (RSNA). doi: 10.1148/radiology.216.3.r00se48820.

Vyborny, C.J., Giger, M.L., & Nishikawa, R.M. (2000). Computer-aided detection and diagnosis of breast cancer. RADIOLOGIC CLINICS OF NORTH AMERICA, 38(4), 725-+.Elsevier. doi: 10.1016/S0033-8389(05)70197-4.

Anastasio, M.A., Kupinski, M.A., Nishikawa, R.M., & Giger, M.L. (1999). Multiobjective approach to optimizing compterized detection schemes. IEEE Nuclear Science Symposium and Medical Imaging Conference, 3, 1879-1883.

Doi, K., MacMahon, H., Katsuragawa, S., Nishikawa, R.M., & Jiang, Y.L. (1999). Computer-aided diagnosis in radiology: potential and pitfalls. EUROPEAN JOURNAL OF RADIOLOGY, 31(2), 97-109.Elsevier. doi: 10.1016/S0720-048X(99)00016-9.

Hamed, S.S., Gleason, S.S., & Nishikawa, R.M. (1999). Front-end data reduction in computer-aided diagnosis of mammograms: A pilot study. Proceedings of SPIE - The International Society for Optical Engineering, 3661(II), 1535-1543.

Jiang, Y., & Nishikawa, R.M. (1999). Radiologists' ability of using computer-aided diagnosis (CAD) to improve breast biopsy recommendations. Proceedings of SPIE - The International Society for Optical Engineering, 3663, 56-60.

Jiang, Y.L., Nishikawa, R.M., Schmidt, R.A., Metz, C.E., Giger, M.L., & Doi, K. (1999). Improving breast cancer diagnosis with computer-aided diagnosis. ACADEMIC RADIOLOGY, 6(1), 22-33.Elsevier. doi: 10.1016/S1076-6332(99)80058-0.

Nishikawa, R.M. (1999). Computer-aided diagnosis complements full-field digital mammography. Diagnostic Imaging, 21(9), 47-75.

Anastasio, M.A., Yoshida, H., Nagel, R., Nishikawa, R.M., & Doi, K. (1998). A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms. MEDICAL PHYSICS, 25(9), 1613-1620.Wiley. doi: 10.1118/1.598341.

Nagel, R.H., Nishikawa, R.M., Papaioannou, J., & Doi, K. (1998). Analysis of methods for reducing false positives in the automated detection of clustered microcalcifications in mammograms. MEDICAL PHYSICS, 25(8), 1502-1506.Wiley. doi: 10.1118/1.598326.

Nishikawa, R.M. (1998). Mammographic Databases. Breast Disease, 10(3-4), 137-150.IOS Press. doi: 10.3233/bd-1998-103-414.

Zhang, W., Yoshida, H., Nishikawa, R.M., & Doi, K. (1998). Optimally weighted wavelet transform based on supervised training for detection of microcalcifications in digital mammograms. MEDICAL PHYSICS, 25(6), 949-956.Wiley. doi: 10.1118/1.598273.

Doi, K., Giger, M.L., Nishikawa, R.M., & Schmidt, R.A. (1997). Computer aided diagnosis of breast cancer on mammograms. Breast Cancer, 4(4), 228-233.Springer Nature. doi: 10.1007/bf02966511.

Jiang, Y., Nishikawa, R.M., Wolverton, D.E., Metz, C.E., Schmidt, R.A., & Doi, K. (1997). Computerized classification of malignant and benign clustered microcalcifications in mammograms. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2, 521-523.

Krupinski, E.A., & Nishikawa, R.M. (1997). Comparison of eye position versus computer identified microcalcification clusters on mammograms. MEDICAL PHYSICS, 24(1), 17-23.Wiley. doi: 10.1118/1.597941.

Bick, U., Giger, M.L., Schmidt, R.A., Nishikawa, R.M., & Doi, K. (1996). Density correction of peripheral breast tissue on digital mammograms. RADIOGRAPHICS, 16(6), 1403-1411.Radiological Society of North America (RSNA). doi: 10.1148/radiographics.16.6.8946544.

Carlin, M.D., Nishikawa, R.M., MacMahon, H., & Doi, K. (1996). The effect of x-ray beam alignment on the performance of antiscatter grids. MEDICAL PHYSICS, 23(8), 1347-1350.Wiley. doi: 10.1118/1.597767.

Jiang, Y.L., Metz, C.E., & Nishikawa, R.M. (1996). A receiver operating: Characteristic partial area index for highly sensitive diagnostic tests. RADIOLOGY, 201(3), 745-750.Radiological Society of North America (RSNA). doi: 10.1148/radiology.201.3.8939225.

Jiang, Y.L., Nishikawa, R.M., Wolverton, D.E., Metz, C.E., Giger, M.L., Schmidt, R.A., Vyborny, C.J., & Doi, K. (1996). Malignant and benign clustered microcalcifications: Automated feature analysis and classification. RADIOLOGY, 198(3), 671-678.Radiological Society of North America (RSNA). doi: 10.1148/radiology.198.3.8628853.

Yoshida, H., Doi, K., Nishikawa, R.M., Giger, M.L., & Schmidt, R.A. (1996). An improved computer-assisted diagnostic scheme using wavelet transform for detecting clustered microcalcifications in digital mammograms. ACADEMIC RADIOLOGY, 3(8), 621-627.Elsevier. doi: 10.1016/S1076-6332(96)80186-3.

Zhang, W., Doi, K., Giger, M.L., Nishikawa, R.M., & Schmidt, R.A. (1996). An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. MEDICAL PHYSICS, 23(4), 595-601.Wiley. doi: 10.1118/1.597891.

BICK, U., GIGER, M.L., SCHMIDT, R.A., NISHIKAWA, R.M., WOLVERTON, D.E., & DOI, K. (1995). AUTOMATED SEGMENTATION OF DIGITIZED MAMMOGRAMS. ACADEMIC RADIOLOGY, 2(1), 1-9.Elsevier. doi: 10.1016/S1076-6332(05)80239-9.

Doi, K., Giger, M.L., Nishikawa, R.M., Hoffmann, K.R., MacMahon, H., & Schmidt, R.A. (1995). Potential usefulness of digital imaging in clinical diagnostic radiology: Computer-aided diagnosis. Journal of Digital Imaging, 8(Suppl 1), 2-7.Springer Nature. doi: 10.1007/bf03168057.

EMA, T., DOI, K., NISHIKAWA, R.M., JIANG, Y.L., & PAPAIOANNOU, J. (1995). IMAGE FEATURE ANALYSIS AND COMPUTER-AIDED DIAGNOSIS IN MAMMOGRAPHY - REDUCTION OF FALSE-POSITIVE CLUSTERED MICROCALCIFICATIONS USING LOCAL EDGE-GRADIENT ANALYSIS. MEDICAL PHYSICS, 22(2), 161-169.Wiley. doi: 10.1118/1.597465.

METZ, C.E., WAGNER, R.F., DOI, K., BROWN, D.G., NISHIKAWA, R.M., & MYERS, K.J. (1995). TOWARD CONSENSUS ON QUANTITATIVE ASSESSMENT OF MEDICAL IMAGING-SYSTEMS. MEDICAL PHYSICS, 22(7), 1057-1061.Wiley. doi: 10.1118/1.597511.

NISHIKAWA, R.M., DOI, K., GIGER, M.L., SCHMIDT, R.A., VYBORNY, C.J., MONNIERCHOLLEY, L., PAPAIOANNOU, J., & LU, P. (1995). COMPUTERIZED DETECTION OF CLUSTERED MICROCALCIFICATIONS - EVALUATION OF PERFORMANCE ON MAMMOGRAMS FROM MULTIPLE CENTERS. RADIOGRAPHICS, 15(2), 443-452.Radiological Society of North America (RSNA). doi: 10.1148/radiographics.15.2.7761647.

NISHIKAWA, R.M., GIGER, M.L., DOI, K., VYBORNY, C.J., & SCHMIDT, R.A. (1995). COMPUTER-AIDED DETECTION OF CLUSTERED MICROCALCIFICATIONS ON DIGITAL MAMMOGRAMS. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 33(2), 174-178.Springer Nature. doi: 10.1007/BF02523037.

Schmidt, R.A., & Nishikawa, R.M. (1995). Clinical use of digital mammography: The present and the prospects. Journal of Digital Imaging, 8(Suppl 1), 74.Springer Nature. doi: 10.1007/bf03168072.

Hoffmann, K.R., Doi, K., MacMahon, H., Giger, M.L., Nishikawa, R.M., Xu, X.W., Yao, L., Kano, A., & Carlin, M. (1994). Development of a digital duplication system for portable chest radiographs. Journal of Digital Imaging, 7(3), 146.Springer Nature. doi: 10.1007/bf03168508.

NISHIKAWA, R.M., GIGER, M.L., DOI, K., METZ, C.E., YIN, F.F., VYBORNY, C.J., & SCHMIDT, R.A. (1994). EFFECT OF CASE SELECTION ON THE PERFORMANCE OF COMPUTER-AIDED DETECTION SCHEMES. MEDICAL PHYSICS, 21(2), 265-269.Wiley. doi: 10.1118/1.597287.

ZHANG, W., DOI, K., GIGER, M.L., WU, Y.Z., NISHIKAWA, R.M., & SCHMIDT, R.A. (1994). COMPUTERIZED DETECTION OF CLUSTERED MICROCALCIFICATIONS IN DIGITAL MAMMOGRAMS USING A SHIFT-INVARIANT ARTIFICIAL NEURAL-NETWORK. MEDICAL PHYSICS, 21(4), 517-524.Wiley. doi: 10.1118/1.597177.

DOI, K., GIGER, M.L., NISHIKAWA, R.M., HOFFMANN, K.R., MACMAHON, H., SCHMIDT, R.A., & CHUA, K.G. (1993). DIGITAL RADIOGRAPHY - A USEFUL CLINICAL TOOL FOR COMPUTER-AIDED DIAGNOSIS BY QUANTITATIVE-ANALYSIS OF RADIOGRAPHIC IMAGES. ACTA RADIOLOGICA, 34(5), 426-439.SAGE Publications. doi: 10.3109/02841859309175379.

GIGER, M.L., DOI, K., MACMAHON, H., NISHIKAWA, R.M., HOFFMANN, K.R., VYBORNY, C.J., SCHMIDT, R.A., JIA, H., ABE, K., CHEN, X., KANO, A., KATSURAGAWA, S., YIN, F.F., ALPERIN, N., METZ, C.E., BEHLEN, F.M., & SLUIS, D. (1993). AN INTELLIGENT WORKSTATION FOR COMPUTER-AIDED DIAGNOSIS. RADIOGRAPHICS, 13(3), 647-656.Radiological Society of North America (RSNA). doi: 10.1148/radiographics.13.3.8316671.

NISHIKAWA, R.M., GIGER, M.L., DOI, K., VYBORNY, C.J., & SCHMIDT, R.A. (1993). COMPUTER-AIDED DETECTION OF CLUSTERED MICROCALCIFICATIONS - AN IMPROVED METHOD FOR GROUPING DETECTED SIGNALS. MEDICAL PHYSICS, 20(6), 1661-1666.Wiley. doi: 10.1118/1.596952.

DOI, K., GIGER, M.L., MACMAHON, H., HOFFMANN, K.R., NISHIKAWA, R.M., SCHMIDT, R.A., CHUA, K.G., KATSURAGAWA, S., NAKAMORI, N., SANADA, S., YOSHIMURA, H., METZ, C.E., MONTNER, S.M., MATSUMOTO, T., CHEN, X., & VYBORNY, C.J. (1992). COMPUTER-AIDED DIAGNOSIS - DEVELOPMENT OF AUTOMATED SCHEMES FOR QUANTITATIVE-ANALYSIS OF RADIOGRAPHIC IMAGES. SEMINARS IN ULTRASOUND CT AND MRI, 13(2), 140-152.

WU, Y.Z., DOI, K.N., GIGER, M.L., & NISHIKAWA, R.M. (1992). COMPUTERIZED DETECTION OF CLUSTERED MICROCALCIFICATIONS IN DIGITAL MAMMOGRAMS - APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS. MEDICAL PHYSICS, 19(3), 555-560.Wiley. doi: 10.1118/1.596845.

YIN, F.F., GIGER, M.L., DOI, K., YOSHIMURA, H., XU, X.W., & NISHIKAWA, R.M. (1992). EVALUATION OF IMAGING PROPERTIES OF A LASER FILM DIGITIZER. PHYSICS IN MEDICINE AND BIOLOGY, 37(1), 273-280.IOP Publishing. doi: 10.1088/0031-9155/37/1/020.

NISHIKAWA, R.M., & YAFFE, M.J. (1990). MODEL OF THE SPATIAL-FREQUENCY-DEPENDENT DETECTIVE QUANTUM EFFICIENCY OF PHOSPHOR SCREENS. MEDICAL PHYSICS, 17(5), 894-904.Wiley. doi: 10.1118/1.596583.

NISHIKAWA, R.M., & YAFFE, M.J. (1990). EFFECT OF VARIOUS NOISE SOURCES ON THE DETECTIVE QUANTUM EFFICIENCY OF PHOSPHOR SCREENS. MEDICAL PHYSICS, 17(5), 887-893.Wiley. doi: 10.1118/1.596572.

Holdsworth, D.W., Nishikawa, R.M., Mawdsley, G.E., Yaffe, M.J., & Fenster, A. (1989). Slot-Beam Digital Mammography Using A Time-Delay Integration (TDI) CCD. In Dwyer III, S.J., Jost, R.G., & Schneider, R.H. (Eds.). Proceedings of SPIE--the International Society for Optical Engineering, 1090, 306-313.SPIE, the international society for optics and photonics. doi: 10.1117/12.953215.

NISHIKAWA, R.M., YAFFE, M.J., & HOLMES, R.B. (1989). EFFECT OF FINITE PHOSPHOR THICKNESS ON DETECTIVE QUANTUM EFFICIENCY. MEDICAL PHYSICS, 16(5), 773-780.Wiley. doi: 10.1118/1.596335.

Nishikawa, R.M., & Yaffe, M.J. (1988). Modelling Of The Spatial-Frequency-Dependent Detective Quantum Efficiency Of X-Ray Image Receptors. In Schneider, R.H., & Dwyer III, S.J. (Eds.). Proceedings of SPIE--the International Society for Optical Engineering, 0914, 128-138.SPIE, the international society for optics and photonics. doi: 10.1117/12.968624.

Yaffe, M.J., Nishikawa, R.M., Maidment, A.D.A., & Fenster, A. (1988). Development Of A Digital Mammography System. In Schneider, R.H., & Dwyer III, S.J. (Eds.). Proceedings of SPIE--the International Society for Optical Engineering, 0914, 182-188.SPIE, the international society for optics and photonics. doi: 10.1117/12.968631.

NISHIKAWA, R.M., MAWDSLEY, G.E., FENSTER, A., & YAFFE, M.J. (1987). SCANNED-PROJECTION DIGITAL MAMMOGRAPHY. MEDICAL PHYSICS, 14(5), 717-727.Wiley. doi: 10.1118/1.596147.

YAFFE, M.J., JOHNS, P.C., NISHIKAWA, R.M., MAWDSLEY, G.E., & CALDWELL, C.B. (1986). ANTHROPOMORPHIC RADIOLOGIC PHANTOMS. RADIOLOGY, 158(2), 550-552.Radiological Society of North America (RSNA). doi: 10.1148/radiology.158.2.3941885.

NISHIKAWA, R.M., & YAFFE, M.J. (1985). SIGNAL-TO-NOISE PROPERTIES OF MAMMOGRAPHIC FILM SCREEN SYSTEMS. MEDICAL PHYSICS, 12(1), 32-39.Wiley. doi: 10.1118/1.595781.

Yaffe, M.J., Nishikawa, R.M., Fenster, A., Cunningham, I.A., & Mawdsley, G.E. (1985). Scanned Orojection Digital Mammographic Imaging. In Mulvaney, J.A. (Ed.). Proceedings of SPIE--the International Society for Optical Engineering, 0555, 266-271.SPIE, the international society for optics and photonics. doi: 10.1117/12.949503.

YAFFE, M.J., MAWDSLEY, G.E., & NISHIKAWA, R.M. (1983). QUALITY ASSURANCE IN A NATIONAL BREAST SCREENING STUDY. In Fullerton, G.D. (Ed.). PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 419, 23-30.SPIE, the international society for optics and photonics. doi: 10.1117/12.936000.

Lee, J., & Nishikawa, R.M. (2020). Simulating breast mammogram using conditional generative adversarial network: application towards finding mammographically-occult cancer. In Hahn, H.K., & Mazurowski, M.A. (Eds.). In Progress in Biomedical Optics and Imaging, 11314, (p. 1131418-1131418-7).SPIE, the international society for optics and photonics. doi: 10.1117/12.2549093.

de Cea, M.V.S., Yang, Y., & Nishikawa, R.M. (2018). Reducing the Effect of False Positives in Classification of Detected Clustered Microcalcifications. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018-April, (pp. 253-256).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/isbi.2018.8363567.

Lee, J., Nishikawa, R.M., & Rohde, G.K. (2018). Detecting mammographically-occult cancer in women with dense breasts using Radon Cumulative Distribution Transform: a preliminary analysis. In Mori, K., & Petrick, N. (Eds.). In Medical Imaging 2018: Computer-Aided Diagnosis, 10575, (p. 1057508).SPIE, the international society for optics and photonics. doi: 10.1117/12.2293541.

Lee, J., Nishikawa, R.M., Reiser, I., & Boone, J.M. (2017). Neutrosophic segmentation of breast lesions for dedicated breast CT. In Armato, S.G., & Petrick, N.A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 10134, (p. 101340q-101340q-7).SPIE, the international society for optics and photonics. doi: 10.1117/12.2254128.

Marcomini, K.D., Fleury, E.F.C., Oliveira, V.M., Carneiro, A.A.O., Schiabel, H., & Nishikawa, R.M. (2017). Agreement between a computer-assisted tool and radiologists to classify lesions in breast elastography images. In Armato, S.G., & Petrick, N.A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 10134, (p. 101342t-101342t-8).SPIE, the international society for optics and photonics. doi: 10.1117/12.2255001.

Marcomini, K.D., Fleury, E.F.C., Oliveira, V.M., Carneiro, A.A.O., Schiabel, H., & Nishikawa, R.M. (2017). Agreement between a computer-assisted tool and radiologists to classify lesions in breast elastography images. In Proceedings of SPIE - The International Society for Optical Engineering, 10327.

Hakim, C.M., Bandos, A.I., Ganott, M.A., Catullo, V.J., Chough, D.M., Kelly, A.E., Shinde, D.D., Sumkin, J.H., Wallace, L.P., Nishikawa, R.M., & Gur, D. (2016). Changes in frequency of recall recommendations of examinations depicting cancer with the availability of either priors or digital breast tomosynthesis. In Abbey, C.K., & Kupinski, M.A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 9787, (p. 97871a-97871a-4).SPIE, the international society for optics and photonics. doi: 10.1117/12.2213075.

Lee, J., Nishikawa, R.M., Reiser, I., & Boone, J.M. (2016). Can model observers be developed to reproduce radiologists' diagnostic performances? Our study says not so fast!. In Abbey, C.K., & Kupinski, M.A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 9787, (p. 978707-978707-7).SPIE, the international society for optics and photonics. doi: 10.1117/12.2216253.

Marcomini, K.D., Fleury, E.F.C., Schiabel, H., & Nishikawa, R.M. (2016). Proposal of Semi-automatic Classification of Breast Lesions for Strain Sonoelastography Using a Dedicated CAD System. In Lecture Notes in Computer Science, 9699, (pp. 454-460).Springer Nature. doi: 10.1007/978-3-319-41546-8_57.

Nishikawa, R.M., Comstock, C.E., Linver, M.N., Newstead, G.M., Sandhir, V., & Schmidt, R.A. (2016). Agreement Between Radiologists’ Interpretations of Screening Mammograms. In Lecture Notes in Computer Science, 9699, (pp. 3-10).Springer Nature. doi: 10.1007/978-3-319-41546-8_1.

Wang, J., Yang, Y., & Nishikawa, R.M. (2016). Quantitative Study of Image Features of Clustered Microcalcifications in for-Presentation Mammograms. In 2016 IEEE International Conference on Image Processing (ICIP), 2016-August, (pp. 3404-3408).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/icip.2016.7532991.

Wang, J., Yang, Y., Wernick, M.N., & Nishikawa, R.M. (2016). An Image-Retrieval Aided Diagnosis System for Clustered Microcalcifications. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016-June, (pp. 1076-1079).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/isbi.2016.7493452.

Nishikawa, R.M., & Bandos, A. (2014). Predicting the Benefit of Using CADe in Screening Mammography. In Lecture Notes in Computer Science, 8539, (pp. 44-49).Springer Nature. doi: 10.1007/978-3-319-07887-8_7.

Sidky, E.Y., Reiser, I.S., Nishikawa, R.M., & Pan, X. (2014). Enhancing tissue structures with iterative image reconstruction for digital breast tomosynthesis. In Whiting, B.R., & Hoeschen, C. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 9033, (p. 90330w-90330w-9).SPIE, the international society for optics and photonics. doi: 10.1117/12.2043776.

Wang, J., Yang, Y., Wernick, M.N., & Nishikawa, R.M. (2014). Exploring perceptually similar cases with multi-dimensional scaling. In Aylward, S., & Hadjiiski, L.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 9035, (p. 90351w-90351w-6).SPIE, the international society for optics and photonics. doi: 10.1117/12.2043600.

Chen, X., Nishikawa, R.M., & Mou, X. (2013). Conventional mammographic image generation in dual-energy digital mammography. In Nishikawa, R.M., & Whiting, B.R. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 8668, (p. 866823-866823-9).SPIE, the international society for optics and photonics. doi: 10.1117/12.2007828.

Reiser, I., Sidky, E.Y., Nishikawa, R.M., Yang, K., Boone, J.M., & Pan, X. (2013). Fast, robust dynamic field-of-view adjustment for iterative reconstruction of dedicated breast CT. In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), (pp. 1-2).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/nssmic.2013.6829370.

Siewerdsen, J., Nishikawa, R., Cunningham, I., Chen, G., & Bochud, F. (2013). TU‐E‐103‐01: Image Quality Models in Advanced CT Applications. In Medical Physics, 40(6Part27), (pp. 449-450).Wiley. doi: 10.1118/1.4815440.

Wang, J., Yang, Y., & Nishikawa, R.M. (2013). Reduction of False Positive Detection in Clustered Microcalcifications. In 2013 IEEE International Conference on Image Processing, (pp. 1433-1437).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/icip.2013.6738294.

Chen, X., Nishikawa, R.M., Chan, S.T., Lau, B.A., Zhang, L., & Mou, X. (2012). Algorithmic scatter correction in dual-energy digital mammography for calcification imaging. In Pelc, N.J., Nishikawa, R.M., & Whiting, B.R. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 8313, (p. 83130e-83130e-10).SPIE, the international society for optics and photonics. doi: 10.1117/12.911775.

Nishikawa, R.M. (2012). Estimating Sensitivity and Specificity in an ROC Experiment. In Lecture Notes in Computer Science, 7361, (pp. 690-696).Springer Nature. doi: 10.1007/978-3-642-31271-7_89.

Nishikawa, R.M. (2012). Methods for Evaluating the Effectiveness of Screening Mammography Are Not Necessarily Valid for Evaluating the Effectiveness of Computer-Aided Detection in Screening Mammography. In Lecture Notes in Computer Science, 7361, (pp. 705-712).Springer Nature. doi: 10.1007/978-3-642-31271-7_91.

Nishikawa, R.M. (2012). Fortieth anniversary of spie medical imaging meeting. In Proceedings of SPIE - The International Society for Optical Engineering, 8425.

Proceedings of SPIE. (2012). Front Matter: Volume 8315. In van Ginneken, B., & Novak, C.L. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 8315, (p. 831501-831501-38).SPIE, the international society for optics and photonics. doi: 10.1117/12.931426.

Proceedings of SPIE. (2012). Front Matter: Volume 8313. In Pelc, N.J., Nishikawa, R.M., & Whiting, B.R. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 8313, (p. 831301-831301-46).SPIE, the international society for optics and photonics. doi: 10.1117/12.945882.

Reiser, I., & Nishikawa, R.M. (2012). Signal-known exactly detection performance in tomosynthesis: does volume visualization help human observers?. In Abbey, C.K., & Mello-Thoms, C.R. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 8318, (p. 83180k-83180k-9).SPIE, the international society for optics and photonics. doi: 10.1117/12.913559.

Reiser, I., Lau, B.A., Nishikawa, R.M., & Bakic, P.R. (2012). A Directional Small-Scale Tissue Model for an Anthropomorphic Breast Phantom. In Lecture Notes in Computer Science, 7361, (pp. 141-148).Springer Nature. doi: 10.1007/978-3-642-31271-7_19.

Reiser, I., Lu, Z., & Nishikawa, R. (2012). TH‐E‐217BCD‐01: Contrast‐To‐Noise Ratio Is Not an Appropriate Measure of CT Image Quality When Comparing Different Iterative Reconstruction Algorithms. In Medical Physics, 39(6Part31), (p. 4014).Wiley. doi: 10.1118/1.4736374.

Chen, X., Nishikawa, R.M., Chan, S.T., Zhang, L., & Mou, X. (2011). Image noise sensitivity of dual-energy digital mammography for calcification imaging. In Pelc, N.J., Samei, E., & Nishikawa, R.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 7961, (p. 796155-796155-8).SPIE, the international society for optics and photonics. doi: 10.1117/12.877932.

Jing, H., Yang, Y., Wernick, M.N., Yarusso, L.M., & Nishikawa, R.M. (2011). A comparison study of textural features between FFDM and film mammogram images. In Summers, R.M., & van Ginneken, B. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 7963, (p. 79631m-79631m-6).SPIE, the international society for optics and photonics. doi: 10.1117/12.877577.

Jing, H., Yang, Y., Yarusso, L.M., & Nishikawa, R.M. (2011). TEXTURAL FEATURE COMPARISON BETWEEN FFDM AND FILM MAMMOGRAMS. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 1, (pp. 148-151).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/isbi.2011.5872375.

Lau, B.A., Reiser, I., & Nishikawa, R.M. (2011). Issues in characterizing anatomic structure in digital breast tomosynthesis. In Pelc, N.J., Samei, E., & Nishikawa, R.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 7961, (p. 796113-796113-8).SPIE, the international society for optics and photonics. doi: 10.1117/12.878871.

Nishikawa, R., Glick, S., Bakic, P., & Reiser, I. (2011). MO‐A‐214‐01: 3D Breast Models. In Medical Physics, 38(6Part25), (p. 3706).Wiley. doi: 10.1118/1.3612892.

Bakic, P.R., Lau, B., Carton, A.K., Reiser, I., Maidment, A.D.A., & Nishikawa, R.M. (2010). An Anthropomorphic Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom Projections. In Lecture Notes in Computer Science, 6136, (pp. 452-458).Springer Nature. doi: 10.1007/978-3-642-13666-5_61.

Lau, B., Bakic, P., Reiser, I., Carton, A., Maidment, A., & Nishikawa, R. (2010). TH‐D‐201B‐08: An Anthropomorphic Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom Reconstructions. In Medical Physics, 37(6Part7), (p. 3473).Wiley. doi: 10.1118/1.3469567.

Nishikawa, R.M., & Pesce, L.L. (2010). Stratified Sampling for Case Selection Criteria for Evaluating CAD. In Lecture Notes in Computer Science, 6136, (pp. 534-539).Springer Nature. doi: 10.1007/978-3-642-13666-5_72.

Nishikawa, R.M., Jiang, Y., & Metz, C.E. (2010). Rating scales for observer performance studies. In Manning, D.J., & Abbey, C.K. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 7627, (p. 762703-762703-7).SPIE, the international society for optics and photonics. doi: 10.1117/12.844993.

Reiser, I., & Nishikawa, R.M. (2010). Human Observer Performance in a Single Slice or a Volume: Effect of Background Correlation. In Lecture Notes in Computer Science, 6136, (pp. 327-333).Springer Nature. doi: 10.1007/978-3-642-13666-5_44.

Reiser, I., Joseph, S.P., Nishikawa, R.M., Giger, M.L., Boone, J., Lindfors, K., Edwards, A., Packard, N., Moore, R.H., & Kopans, D.B. (2010). Evaluation of a 3D lesion segmentation algorithm on DBT and breast CT images. In Karssemeijer, N., & Summers, R.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 7624, (p. 76242n-76242n-7).SPIE, the international society for optics and photonics. doi: 10.1117/12.844484.

Reiser, I., Lee, S., Little, K., & Nishikawa, R.M. (2010). Toward validation of a 3D structured background model for breast imaging. In Manning, D.J., & Abbey, C.K. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 7627, (p. 762716-762716-5).SPIE, the international society for optics and photonics. doi: 10.1117/12.844692.

Reiser, I.S., Nishikawa, R.M., & Lau, B.A. (2009). Effect of non-isotropic detector blur on microcalcification detectability in tomosynthesis. In Samei, E., & Hsieh, J. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 7258, (p. 72585z-72585z-10).SPIE, the international society for optics and photonics. doi: 10.1117/12.813808.

Fredenberg, E., Cederström, B., Lundqvist, M., Ribbing, C., Åslund, M., Diekmann, F., Nishikawa, R., & Danielsson, M. (2008). Contrast-enhanced dual-energy subtraction imaging using electronic spectrum-splitting and multi-prism x-ray lenses. In Hsieh, J., & Samei, E. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6913, (p. 691310-691310-12).SPIE, the international society for optics and photonics. doi: 10.1117/12.770501.

Lau, B., Reiser, I., & Nishikawa, R. (2008). TH‐C‐332‐09: The Effect of Variable Exposure Distribution On Microcalcification Detectability in Tomosynthesis. In Medical Physics, 35(6Part26), (p. 2978).Wiley. doi: 10.1118/1.2962875.

Lau, B.A., Reiser, I.S., & Nishikawa, R.M. (2008). Microcalcification detectability in tomosynthesis. In Hsieh, J., & Samei, E. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6913, (p. 69134l-69134l-7).SPIE, the international society for optics and photonics. doi: 10.1117/12.773076.

Reiser, I., Lau, B.A., & Nishikawa, R.M. (2008). Effect of Scan Angle and Reconstruction Algorithm on Model Observer Performance in Tomosynthesis. In Lecture Notes in Computer Science, 5116, (pp. 606-611).Springer Nature. doi: 10.1007/978-3-540-70538-3_84.

Sidky, E.Y., Reiser, I., Nishikawa, R.M., Pan, X., Chartrand, R., Kopans, D.B., & Moore, R.H. (2008). Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization. In Hsieh, J., & Samei, E. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6913, (p. 691328-691328-6).SPIE, the international society for optics and photonics. doi: 10.1117/12.772796.

Sidky, E.Y., Reiser, I.S., Nishikawa, R.M., & Pan, X. (2008). Preliminary Study on the Impact of Digital Breast Tomosynthesis Scanning Angle on Micro-Calcification Imaging. In 2008 IEEE Nuclear Science Symposium Conference Record, (pp. 4201-4204).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/nssmic.2008.4774208.

Yarusso, L.M., & Nishikawa, R.M. (2008). Influence of signal-to-noise ratio and temporal stability on computer-aided detection of mammographic microcalcifications in digitized screen-film and full-field digital mammography. In Giger, M.L., & Karssemeijer, N. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6915, (p. 69151x-69151x-8).SPIE, the international society for optics and photonics. doi: 10.1117/12.773069.

Chinander, M.R., Nishikawa, R.M., & Seifi, P. (2007). Observer evaluation of a method for producing simulated mammograms. In Hsieh, J., & Flynn, M.J. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6510(PART 1), (p. 651004-651004-11).SPIE, the international society for optics and photonics. doi: 10.1117/12.713862.

Nishikawa, R.M., Reiser, I., Seifi, P., & Vyborny, C.J. (2007). A new approach to digital breast tomosynthesis for breast cancer screening. In Hsieh, J., & Flynn, M.J. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6510(PART 2), (p. 65103c-65103c-8).SPIE, the international society for optics and photonics. doi: 10.1117/12.713677.

Reiser, I., Nishikawa, R.M., Sidky, E.Y., Chinander, M.R., & Seifi, P. (2007). Development of a model for breast tomosynthesis image acquisition. In Hsieh, J., & Flynn, M.J. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6510(PART 2), (p. 65103d-65103d-8).SPIE, the international society for optics and photonics. doi: 10.1117/12.713752.

Sidky, E.Y., Reiser, I.S., Nishikawa, R., & Pan, X. (2007). Image reconstruction in digital breast tomosynthesis by total variation minimization. In Hsieh, J., & Flynn, M.J. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6510(PART 2), (p. 651027-651027-6).SPIE, the international society for optics and photonics. doi: 10.1117/12.713663.

Li, H., Giger, M.L., Yuan, Y., Lan, L., Suzuki, K., Jamieson, A., Yarusso, L., Nishikawa, R.M., & Sennett, C. (2006). Comparison of computerized image analyses for digitized screen-film mammograms and full-field digital mammography images. In DIGITAL MAMOGRAPHY, PROCEEDINGS, 4046, (pp. 569-575).Springer Nature. doi: 10.1007/11783237_77.

Nishikawa, R. (2006). WE‐C‐330D‐02: Image Science and CAD: In Pursuit of a Fundamental Theoretical Basis for CAD Development. In Medical Physics, 33(6Part19), (p. 2231).Wiley. doi: 10.1118/1.2241689.

Nishikawa, R.M. (2006). Modeling the effect of computer-aided detection on the sensitivity of screening mammography. In DIGITAL MAMOGRAPHY, PROCEEDINGS, 4046, (pp. 46-53).Springer Nature. doi: 10.1007/11783237_7.

Nishikawa, R.M., Edwards, A., Schmidt, R.A., Papaioannou, J., & Linver, M.N. (2006). Can radiologists recognize that a computer has identified cancers that they have overlooked?. In Jiang, Y., & Eckstein, M.P. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 6146, (p. 614601-614601-8).SPIE, the international society for optics and photonics. doi: 10.1117/12.656351.

Reiser, I., Sidky, E.Y., Nishikawa, R.M., & Pan, X. (2006). Development of an analytic breast phantom for quantitative comparison of reconstruction algorithms for digital breast tomosynthesis. In DIGITAL MAMOGRAPHY, PROCEEDINGS, 4046, (pp. 190-196).Springer Nature. doi: 10.1007/11783237_27.

Wei, L., Yang, Y., Nishikawa, R.M., & Wernick, M.N. (2006). Mammogram Retrieval by Similarity Learning from Experts. In 2014 IEEE International Conference on Image Processing (ICIP), (pp. 2517-2520).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/icip.2006.312805.

Wei, L., Yang, Y., Nishikawa, R.M., & Wernick, M.N. (2006). Learning of perceptual similarity from expert readers for mammogram retrieval. In 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings, 2006, (pp. 1356-1359).

Reiser, I., & Nishikawa, R.M. (2005). Human performance for detection and discrimination of simulated microcalcifications in mammographic backgrounds. In Eckstein, M.P., & Jiang, Y. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5749, (pp. 223-230).SPIE, the international society for optics and photonics. doi: 10.1117/12.597010.

Wei, L., Yang, Y., & Nishikawa, R.M. (2005). Relevance Vector Machine Learning for Detection of Microcalcifications in Mammograms. In IEEE International Conference on Image Processing 2005, 1, (pp. 1-4).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/icip.2005.1529674.

Wei, L., Yang, Y., & Nishikawa, R.M. (2005). A relevance vector machine technique for the automatic detection of clustered microcalcifications (Honorable Mention Poster Award). In Fitzpatrick, J.M., & Reinhardt, J.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5747(II), (pp. 831-839).SPIE, the international society for optics and photonics. doi: 10.1117/12.594828.

Wei, L., Yang, Y., Nishikawa, R.M., & Jiang, Y. (2005). A study of several CAD methods for classification of clustered microcalcifications. In Fitzpatrick, J.M., & Reinhardt, J.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5747(I), (pp. 1-8).SPIE, the international society for optics and photonics. doi: 10.1117/12.594734.

Drukker, K., Edwards, D.C., Giger, M.L., Nishikawa, R.M., & Metz, C.E. (2004). Computerized detection and 3-way classification of breast lesions on ultrasound images. In Fitzpatrick, J.M., & Sonka, M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5370, (pp. 1034-1041).SPIE, the international society for optics and photonics. doi: 10.1117/12.534339.

Edwards, D.C., Metz, C.E., & Nishikawa, R.M. (2004). Hypervolume under the ROC hypersurface of a near-guessing ideal observer in a three-class classification task. In Chakraborty, D.P., & Eckstein, M.P. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5372(26), (pp. 128-137).SPIE, the international society for optics and photonics. doi: 10.1117/12.536068.

Jiang, Y., Schmidt, R.A., Nishikawa, R.M., D'Orsi, C.J., Vyborny, C.J., & Newstead, G.M. (2004). Use of BI-RADS lesion descriptors in computer-aided diagnosis of malignant and benign breast lesions. In Chakraborty, D.P., & Eckstein, M.P. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5372(26), (pp. 199-202).SPIE, the international society for optics and photonics. doi: 10.1117/12.537183.

Nishikawa, R.M., Yang, Y., Huo, D., Wernick, M., Sennett, C.A., Papaioannou, J., & Wei, L. (2004). Observers' ability to judge the similarity of clustered calcifications on mammograms. In Chakraborty, D.P., & Eckstein, M.P. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5372(26), (pp. 192-198).SPIE, the international society for optics and photonics. doi: 10.1117/12.536571.

Reiser, I., Metz, C.E., & Nishikawa, R.M. (2004). Human efficiency in the detection and discrimination tasks. In Chakraborty, D.P., & Eckstein, M.P. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5372(26), (pp. 166-172).SPIE, the international society for optics and photonics. doi: 10.1117/12.536214.

Reiser, I.S., Sidky, E.Y., Giger, M.L., Nishikawa, R.M., Rafferty, E.A., Kopans, D.B., Moore, R., & Wu, T. (2004). A reconstruction-independent method for computerized mass detection in digital tomosynthesis images of the breast. In Fitzpatrick, J.M., & Sonka, M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5370, (pp. 833-838).SPIE, the international society for optics and photonics. doi: 10.1117/12.535901.

Edwards, D.C., Lan, L., Metz, C.E., Giger, M.L., & Nishikawa, R.M. (2003). Bayesian ANN estimates of three-class ideal observer decision variables for classification of mammographic masses. In Chakraborty, D.P., & Krupinski, E.A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5034, (pp. 474-482).SPIE, the international society for optics and photonics. doi: 10.1117/12.480343.

Jiang, Y., Salfity, M.F., Chen, V., Nishikawa, R.M., Papaioannou, J., Edwards, A.V., & Paquerault, S. (2003). Effect of radiologists' variability on the performance of computer classification of malignant and benign clustered microcalcifications in mammograms. In Chakraborty, D.P., & Krupinski, E.A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5034, (pp. 42-47).SPIE, the international society for optics and photonics. doi: 10.1117/12.480360.

Maidment, A.D.A., Albert, M., Bunch, P.C., Cunningham, I.A., Dobbins, J.T., Gagne, R.M., Nishikawa, R.M., Van Metter, R.L., & Wagner, R.F. (2003). Standardization of NPS measurement: interim report of AAPM TG16. In Yaffe, M.J., & Antonuk, L.E. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5030, (pp. 523-532).SPIE, the international society for optics and photonics. doi: 10.1117/12.480451.

Nishikawa, R.M. (2003). Differences between mono- and poly-energetic spectra in modeling DQE(f). In Yaffe, M.J., & Antonuk, L.E. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5030, (pp. 871-876).SPIE, the international society for optics and photonics. doi: 10.1117/12.480480.

Paquerault, S., Jiang, Y., Nishikawa, R.M., Schmidt, R.A., D'Orsi, C.J., Vyborny, C.J., & Newstead, G.M. (2003). Automated selection of BI-RADS lesion descriptors for reporting calcifications in mammograms. In Sonka, M., & Fitzpatrick, J.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 5032, (pp. 802-809).SPIE, the international society for optics and photonics. doi: 10.1117/12.480847.

Beiden, S.V., Wagner, R.F., Doi, K., Nishikawa, R.M., Freedman, M.T., Lo, S.C.B., & Xu, X.W. (2002). Independent versus sequential reading in ROC studies of computer-assist modalities. In Chakraborty, D.P., & Krupinski, E.A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 4686, (pp. 198-204).SPIE, the international society for optics and photonics. doi: 10.1117/12.462678.

Edwards, D.C., Metz, C.E., & Nishikawa, R.M. (2002). Estimation of three-class ideal observer decision functions with a Bayesian artificial neural network. In Chakraborty, D.P., & Krupinski, E.A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 4686, (pp. 1-12).SPIE, the international society for optics and photonics. doi: 10.1117/12.462662.

El-Naqa, I., Yang, Y., Wernick, M.N., Galatsanos, N.P., & Nishikawa, R. (2002). A support vector machine approach for detection of microcalcifications in mammograms. In IEEE International Conference on Image Processing, 2.

El-Naqa, I., Yang, Y., Wernick, M.N., Galatsanos, N.P., & Nishikawa, R. (2002). Support Vector Machine Learning for Detection of Microcalcifications in Mammograms11This work was supported in part by NIH/NCI grant CA89668. In Proceedings IEEE International Symposium on Biomedical Imaging, 2002-January, (pp. 201-204).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/isbi.2002.1029228.

Giger, M.L., Huo, Z., Vyborny, C.J., Lan, L., Bonta, I.R., Horsch, K., Nishikawa, R.M., & Rosenborough, I. (2002). Intelligent CAD workstation for breast imaging using similarity to known lesions and multiple visual prompt aids. In Sonka, M., & Fitzpatrick, J.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 4684, (pp. 768-773).SPIE, the international society for optics and photonics. doi: 10.1117/12.467222.

Nishikawa, R.M., Salfity, M.F., Jiang, Y., & Papaioannou, J. (2002). Improving the automated classification of clustered calcifications on mammograms through the improved detection of individual calcifications. In Sonka, M., & Fitzpatrick, J.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 4684, (pp. 1339-1345).SPIE, the international society for optics and photonics. doi: 10.1117/12.467097.

Beiden, S.V., Wagner, R.F., Campbell, G., Metz, C.E., Chan, H.P., Nishikawa, R.M., Schnall, M.D., & Jiang, Y. (2001). Analysis of components of variance in multiple-reader studies of computer-aided diagnosis with different tasks. In Krupinski, E.A., & Chakraborty, D.P. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 4324, (pp. 167-176).SPIE, the international society for optics and photonics. doi: 10.1117/12.431185.

Edwards, D.C., Papaioannou, J., Jiang, Y., Kupinski, M.A., & Nishikawa, R.M. (2001). Eliminating false-positive microcalcification clusters in a mammography CAD scheme using a Bayesian neural network. In Sonka, M., & Hanson, K.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 4322(3), (pp. 1954-1960).SPIE, the international society for optics and photonics. doi: 10.1117/12.431089.

Nishikawa, R.M., Giger, M.L., Schmidt, R.A., & Papaioannou, J. (2001). Can computer-aided diagnosis (CAD) help radiologists find mammographically missed screening cancers?. In Krupinski, E.A., & Chakraborty, D.P. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 4324, (pp. 56-63).SPIE, the international society for optics and photonics. doi: 10.1117/12.431172.

Valverde, F.L., Guil, N., Muñoz, J., Nishikawa, R., & Doi, K. (2001). An evaluation criterion for edge detection techniques in noisy images. In IEEE International Conference on Image Processing, 1, (pp. 766-769).

Edwards, D.C., Kupinski, M.A., Nishikawa, R.M., & Metz, C.E. (2000). Estimation of linear observer templates in the presence of multi-peaked Gaussian noise through 2AFC experiments. In Proceedings of SPIE - The International Society for Optical Engineering, 3981, (pp. 85-96).

Jiang, Y., Nishikawa, R.M., Schmidt, R.A., Metz, C.E., & Doi, K. (2000). Relative gains in diagnostic accuracy between computer-aided diagnosis and independent double reading. In Proceedings of SPIE - The International Society for Optical Engineering, 3981, (pp. 10-15).

Sajda, P., Spence, C., Parra, L., & Nishikawa, R. (2000). Hierarchical, multi-resolution models for object recognition: applications to mammographic computer-aided diagnosis. In Proceedings 29th Applied Imagery Pattern Recognition Workshop, 2000-January, (pp. 159-165).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/aiprw.2000.953620.

Jiang, Y., Nishikawa, R.M., & Papaioannou, J. (1998). Requirement of microcalcification detection for computerized classification of malignant and benign clustered microcalcifications. In Hanson, K.M. (Ed.). In Proceedings of SPIE--the International Society for Optical Engineering, 3338, (pp. 313-317).SPIE, the international society for optics and photonics. doi: 10.1117/12.310907.

Nishikawa, R.M., & Yarusso, L.M. (1998). Variations in measured performance of CAD schemes due to database composition and scoring protocol. In Hanson, K.M. (Ed.). In Proceedings of SPIE--the International Society for Optical Engineering, 3338, (pp. 840-844).SPIE, the international society for optics and photonics. doi: 10.1117/12.310894.

Nishikawa, R.M., Wolverton, D.E., Schmidt, R.A., & Papaioannou, J. (1997). Radiologists' ability to discriminate computer-detected true and false positives from an automated scheme for the detection of clustered microcalcifications on digital mammograms. In Kundel, H.L. (Ed.). In Proceedings of SPIE--the International Society for Optical Engineering, 3036, (pp. 198-204).SPIE, the international society for optics and photonics. doi: 10.1117/12.271293.

Nishikawa, R.M., Papaioannou, J., & Collins, S.A. (1996). Reproducibility of an automated scheme for the detection of clustered microcalcifications on digital mammograms. In Loew, M.H., & Hanson, K.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 2710, (pp. 24-29).SPIE, the international society for optics and photonics. doi: 10.1117/12.237942.

Sajda, P., Spence, C.D., Pearson, J.C., & Nishikawa, R.M. (1996). Exploiting context in mammograms: a hierarchical neural network for detecting microcalcifications. In Loew, M.H., & Hanson, K.M. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 2710, (pp. 733-742).SPIE, the international society for optics and photonics. doi: 10.1117/12.237978.

Yoshida, H., Nishikawa, R.M., Giger, M.L., & Doi, K. (1996). Signal/background separation by wavelet packets for detection of microcalcifications in mammograms. In Unser, M.A., Aldroubi, A., & Laine, A.F. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 2825, (pp. 805-811).SPIE, the international society for optics and photonics. doi: 10.1117/12.255304.

Nagel, R.H. (1995). Comparison of rule-based and artificial neural network approaches for improving the automated detection of clustered microcalcifications in mammograms. In Proceedings of SPIE--the International Society for Optical Engineering, 2622(2), (pp. 775-779).SPIE, the international society for optics and photonics. doi: 10.1117/12.216875.

Nishikawa, R.M., Haldemann, R.C., Papaioannou, J., Giger, M.L., Lu, P., Schmidt, R.A., Wolverton, D.E., Bick, U., & Doi, K. (1995). Initial experience with a prototype clinical intelligent mammography workstation for computer-aided diagnosis. In Loew, M.H. (Ed.). In Proceedings of SPIE--the International Society for Optical Engineering, 2434, (pp. 65-71).SPIE, the international society for optics and photonics. doi: 10.1117/12.208732.

Yoshida, H., Zhang, W., Cai, W., Doi, K., Nishikawa, R.M., & Giger, M.L. (1995). Optimizing wavelet transform based on supervised learning for detection of microcalcifications in digital mammograms. In IEEE International Conference on Image Processing, 3, (pp. 152-155).

Jiang, Y., Nishikawa, R.M., Wolverton, D.E., Giger, M.L., Doi, K., Schmidt, R.A., & Vyborny, C.J. (1994). Mammographic feature analysis of clustered microcalcifications for classification of breast cancer and benign breast diseases. In Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 16(pt 1), (pp. 594-595).

Nishikawa, R.M. (1994). Analysis of false-positive microcalcification clusters identified by a mammographic computer-aided detection scheme. In Proceedings of SPIE--the International Society for Optical Engineering, 2167, (pp. 773-777).SPIE, the international society for optics and photonics. doi: 10.1117/12.175115.

Yoshida, H., Doi, K., & Nishikawa, R.M. (1994). Automated detection of clustered microcalcifications in digital mammograms using wavelet processing techniques. In Loew, M.H. (Ed.). In Proceedings of SPIE--the International Society for Optical Engineering, 2167, (pp. 868-886).SPIE, the international society for optics and photonics. doi: 10.1117/12.175126.

Doi, K., Giger, M., MacMahon, H., Nishikawa, R., Schmidt, R., Hoffmann, K., Katsuragawa, S., Sanada, S., Behlen, F., & Sluis, D. (1993). Development of Digital Processing Techniques for Computer-Aided Diagnosis in Radiographic Images. In Proceedings. The Third International Conference on Image Management and Communication in Patient Care, (pp. 110-115).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/imac.1993.665440.

Giger, M.L., Nishikawa, R.M., Schmidt, R.A., Vyborny, C.J., Lu, P., Jiang, Y., Huo, Z., Papaioannou, J., Wu, Y., Cox, S., Kunst, R., Bick, U., & Rosculet, K. (1993). Preliminary evaluation of an 'intelligent' mammography workstation. In Proceedings of SPIE - The International Society for Optical Engineering, 1898, (pp. 764-766).

Nishikawa, R.M. (1993). Design of a common database for research in mammogram image analysis. In Acharya, R.S., & Goldgof, D.B. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 1905, (pp. 548-549).SPIE, the international society for optics and photonics. doi: 10.1117/12.148620.

Nishikawa, R.M., Giger, M.L., Doi, K., Vyborny, C.J., Schmidt, R.A., Metz, C.E., Wu, C.Y., Yin, F.F., Jiang, Y., Huo, Z., Lu, P., Zhang, W., Ema, T., Bick, U., Papaioannou, J., & Nagel, R.H. (1993). Computer-aided detection and diagnosis of masses and clustered microcalcifications from digital mammograms. In Acharya, R.S., & Goldgof, D.B. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 1905, (pp. 422-432).SPIE, the international society for optics and photonics. doi: 10.1117/12.148655.

Nishikawa, R.M., Jiang, Y., Giger, M.L., Vyborny, C.J., Schmidt, R.A., & Bick, U. (1993). Characterization of the mammographic appearance of microcalcifications: applications in computer-aided diagnosis. In Proceedings of SPIE - The International Society for Optical Engineering, 1898, (pp. 422-429).

Jiang, Y., Nishikawa, R.M., Giger, M.L., Doi, K., Schmidt, R.A., & Vyborny, C.J. (1992). Method of extracting signal area and signal thickness of microcalcifications from digital mammograms. In Proceedings of SPIE - The International Society for Optical Engineering, 1778, (pp. 28-36).

Nishikawa, R.M., Jiang, Y., Giger, M.L., Doi, K., Vyborny, C.J., & Schmidt, R.A. (1992). Computer-aided detection of clustered microcalcifications. In [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics, 1992-January, (p. 1375-1378 vol.2).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/icsmc.1992.271592.

Wu, Y., Giger, M.L., Doi, K., Metz, C.E., Nishikawa, R.M., Vyborny, C.J., & Schmidt, R.A. (1992). Application of artificial neural networks in mammography for the diagnosis of breast cancer. In Proceedings of SPIE - The International Society for Optical Engineering, 1778, (pp. 19-27).

Giger, M.L., Nishikawa, R.M., Doi, K., Yin, F.F., Vyborny, C.J., Schmidt, R.A., Metz, C.E., Wu, Y., MacMahon, H., & Yoshimura, H. (1991). Development of a 'smart' workstation for use in mammography. In Proceedings of SPIE - The International Society for Optical Engineering, 1445, (pp. 101-103).

Nishikawa, R.M., MacMahon, H., Doi, K., & Bosworth, E. (1991). Potential usefulness of a video printer for producing secondary images from digitized chest radiographs. In Proceedings of SPIE - The International Society for Optical Engineering, 1444, (pp. 180-189).

NISHIKAWA, R.M., & YAFFE, M.J. (1983). AN INVESTIGATION OF DIGITAL MAMMOGRAPHIC IMAGING. In PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 419, (pp. 192-200).