headshot

Stephen House

Assistant Professor
Chem/Petroleum Engineering

about

Li, M., Curnan, M.T., Gresh-Sill, M.A., House, S.D., Saidi, W.A., & Yang, J.C. (2021). Unusual layer-by-layer growth of epitaxial oxide islands during Cu oxidation. NATURE COMMUNICATIONS, 12(1), 2781.Springer Science and Business Media LLC. doi: 10.1038/s41467-021-23043-w.

Zhang, S., Li, Y., Wang, Z., Tang, Y., Huang, X., House, S.D., Huang, H., Zhou, Y., Shen, W., Yang, J., Wang, C., Zhao, Y., Schloegl, R., Hu, P., & Tao, F. (2021). Coordination Number-Dependent Complete Oxidation of Methane on NiO Catalysts. ACS CATALYSIS, 11(15), 9837-9849.American Chemical Society (ACS). doi: 10.1021/acscatal.1c01455.

Ayoola, H.O., Bonifacio, C.S., Zhu, Q., Li, C.H., House, S.D., Kas, J.J., Jinschek, J., Rehr, J.J., Saidi, W.A., & Yang, J.C. (2020). Probing the Local Bonding at the Pt/gamma-Al2O3 Interface. JOURNAL OF PHYSICAL CHEMISTRY C, 124(18), 9876-9885.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.9b12029.

Ayoola, H.O., House, S.D., Bonifacio, C.S., Kisslinger, K., Saidi, W.A., & Yang, J.C. (2020). Evaluating the accuracy of common gamma-Al2O3 structure models by selected area electron diffraction from high-quality crystalline gamma-Al2O3. ACTA MATERIALIA, 182, 257-266.Elsevier BV. doi: 10.1016/j.actamat.2019.10.027.

Ayoola, H.O., Li, C.H., House, S.D., Bonifacio, C.S., Kisslinger, K., Jinschek, J., Saidi, W.A., & Yang, J.C. (2020). Origin and Suppression of Beam Damage-Induced Oxygen-K Edge Artifact from gamma-Al2O3 using Cryo-EELS. ULTRAMICROSCOPY, 219, 113127.Elsevier BV. doi: 10.1016/j.ultramic.2020.113127.

Li, M., Curnan, M., Chi, H., House, S., Saidi, W., Veser, G., & Yang, J. (2020). The Effect of Orientation on Cu2O Reduction Under Methanol Observed by in Situ ETEM. Microscopy and Microanalysis, 26(S2), 668-669.Cambridge University Press (CUP). doi: 10.1017/s1431927620015469.

Li, S., Alfonso, D., Nagarajan, A.V., House, S.D., Yang, J.C., Kauffman, D.R., Mpourmpakis, G., & Jin, R. (2020). Monopalladium Substitution in Gold Nanoclusters Enhances CO2 Electroreduction Activity and Selectivity. ACS CATALYSIS, 10(20), 12011-12016.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02266.

Patil, R.B., House, S.D., Mantri, A., Yang, J.C., & McKone, J.R. (2020). Direct Observation of Ni-Mo Bimetallic Catalyst Formation via Thermal Reduction of Nickel Molybdate Nanorods. ACS CATALYSIS, 10(18), 10390-10398.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02264.

Zou, L., Cao, P., Lei, Y., Zakharov, D., Sun, X., House, S.D., Luo, L., Li, J., Yang, Y., Yin, Q., Chen, X., Li, C., Qin, H., Stach, E.A., Yang, J.C., Wang, G., & Zhou, G. (2020). Atomic-scale phase separation induced clustering of solute atoms. NATURE COMMUNICATIONS, 11(1), 3934.Springer Science and Business Media LLC. doi: 10.1038/s41467-020-17826-w.

Chen, A.N., McClain, S.M., House, S.D., Yang, J.C., & Skrabalak, S.E. (2019). Mechanistic Study of Galvanic Replacement of Chemically Heterogeneous Templates. CHEMISTRY OF MATERIALS, 31(4), 1344-1351.American Chemical Society (ACS). doi: 10.1021/acs.chemmater.8b04630.

Higaki, T., Zhou, M., He, G., House, S.D., Sfeir, M.Y., Yang, J.C., & Jin, R. (2019). Anomalous phonon relaxation in Au-333(SR)(79) nanoparticles with nascent plasmons. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(27), 13215-13220.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1904337116.

Patil, R.B., Mantri, A., House, S.D., Yang, J.C., & McKone, J.R. (2019). Enhancing the Performance of Ni-Mo Alkaline Hydrogen Evolution Electrocatalysts with Carbon Supports. ACS APPLIED ENERGY MATERIALS, 2(4), 2524-2533.American Chemical Society (ACS). doi: 10.1021/acsaem.8b02087.

Dou, J., Tang, Y., Nie, L., Andolina, C.M., Zhang, X., House, S., Li, Y., Yang, J., & Tao, F.F. (2018). Complete Oxidation of Methane on Co3O4/CeO2 Nanocomposite: A Synergic Effect. CATALYSIS TODAY, 311, 48-55.Elsevier BV. doi: 10.1016/j.cattod.2017.12.027.

Dou, J., Tang, Y., Nie, L., Andolina, C.M., Zhang, X., House, S., Li, Y., Yang, J., & Tao, F.F. (2018). Complete Oxidation of Methane on Co3O4/CeO2 Nanocomposite: A Synergic Effect. CATALYSIS TODAY, 311, 48-55.Elsevier BV. doi: 10.1016/j.cattod.2017.12.027.

Duan, Z., Timoshenko, J., Kunal, P., House, S.D., Wan, H., Jarvis, K., Bonifacio, C., Yang, J.C., Crooks, R.M., Frenkel, A.I., Humphrey, S.M., & Henkelman, G. (2018). Structural characterization of heterogeneous RhAu nanoparticles from a microwave-assisted synthesis. NANOSCALE, 10(47), 22520-22532.Royal Society of Chemistry (RSC). doi: 10.1039/c8nr04866e.

Li, Y., Chen, Y., House, S.D., Zhao, S., Wahab, Z., Yang, J.C., & Jin, R. (2018). Interface Engineering of Gold Nanoclusters for CO Oxidation Catalysis. ACS APPLIED MATERIALS & INTERFACES, 10(35), 29425-29434.American Chemical Society (ACS). doi: 10.1021/acsami.8b07552.

Nguyen, L., Tao, P.P., Liu, H., Al-Hada, M., Amati, M., Sezen, H., Gregoratti, L., Tang, Y., House, S.D., & Tao, F.F. (2018). X-ray Photoelectron Spectroscopy Studies of Nanoparticles Dispersed in Static Liquid. LANGMUIR, 34(33), 9606-9616.American Chemical Society (ACS). doi: 10.1021/acs.langmuir.8b00806.

Tang, Y., Ma, L., Dou, J., Andolina, C.M., Li, Y., Ma, H., House, S.D., Zhang, X., Yang, J., & Tao, F.F. (2018). Transition of surface phase of cobalt oxide during CO oxidation. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 20(9), 6440-6449.Royal Society of Chemistry (RSC). doi: 10.1039/c7cp07407g.

Zhang, X., House, S.D., Tang, Y., Nguyen, L., Li, Y., Opalade, A.A., Yang, J.C., Sun, Z., & Tao, F.F. (2018). Complete Oxidation of Methane on NiO Nanoclusters Supported on CeO2 Nanorods through Synergistic Effect. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 6(5), 6467-6477.American Chemical Society (ACS). doi: 10.1021/acssuschemeng.8b00234.

Zhao, S., Austin, N., Li, M., Song, Y., House, S.D., Bernhard, S., Yang, J.C., Mpourmpakis, G., & Jin, R. (2018). Influence of Atomic-Level Morphology on Catalysis: The Case of Sphere and Rod-Like Gold Nanoclusters for CO2 Electroreduction. ACS CATALYSIS, 8(6), 4996-5001.American Chemical Society (ACS). doi: 10.1021/acscatal.8b00365.

House, S.D., Chen, Y., Jin, R., & Yang, J.C. (2017). High-throughput, semi-automated quantitative STEM mass measurement of supported metal nanoparticles using a conventional TEM/STEM. ULTRAMICROSCOPY, 182, 145-155.Elsevier BV. doi: 10.1016/j.ultramic.2017.07.004.

House, S.D., Chen, Y., Jin, R., & Yang, J.C. (2017). High-throughput Quantitative STEM Mass Measurement in Statistically Robust Populations of Supported Metal Nanoparticles. Microscopy and Microanalysis, 23(S1), 1882-1883.Cambridge University Press (CUP). doi: 10.1017/s1431927617010078.

House, S.D., Vajo, J.J., Ren, C., Zaluzec, N.J., Rockett, A.A., & Robertson, I.M. (2017). Impact of initial catalyst form on the 3D structure and performance of ball-milled Ni-catalyzed MgH2 for hydrogen storage. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 42(8), 5177-5187.Elsevier BV. doi: 10.1016/j.ijhydene.2017.01.205.

Zhao, S., & Jin, R. (2017). Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 254(3), 1077-1080. doi: 10.1021/jacs.6bl2529.

Zhao, S., Jin, R., Abroshan, H., Zeng, C., Zhang, H., House, S.D., Gottlieb, E., Kim, H.J., Yang, J.C., Jin, R. (2017). Gold Nanoclusters Promote Electrocatalytic Water Oxidation at the Nanocluster/CoSe2 Interface. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 139(3), 1077-1080.American Chemical Society (ACS). doi: 10.1021/jacs.6b12529.

Zhao, S., Jin, R., Song, Y., Zhang, H., House, S.D., Yang, J.C., Jin, R. (2017). Atomically Precise Gold Nanoclusters Accelerate Hydrogen Evolution over MoS2 Nanosheets: The Dual Interfacial Effect. SMALL, 13(43), 1701519.Wiley. doi: 10.1002/smll.201701519.

House, S.D., Bonifacio, C.S., Grieshaber, R.V., Li, L., Zhang, Z., Ciston, J., Stach, E.A., & Yang, J.C. (2016). Statistical analysis of support thickness and particle size effects in HRTEM imaging of metal nanoparticles. ULTRAMICROSCOPY, 169, 22-29.Elsevier BV. doi: 10.1016/j.ultramic.2016.06.007.

House, S.D., Chen, Y., Jin, R., & Yang, J.C. (2016). High-Throughput, Semi-Automated Quantitative STEM Atom Counting in Supported Metal Nanoparticles Using a Conventional TEM/STEM. Microscopy and Microanalysis, 22(S3), 938-939.Cambridge University Press (CUP). doi: 10.1017/s1431927616005535.

House, S.D., Schamp, C.T., Henry, R., Su, D., Stach, E., & Yang, J.C. (2016). Development of Real-Time Probe Current Calibration for Performing Quantitative STEM with a Cold Field-Emission Gun. Microscopy and Microanalysis, 22(S3), 940-941.Cambridge University Press (CUP). doi: 10.1017/s1431927616005547.

Wang, L.L., Herwadkar, A., Reich, J.M., Johnson, D.D., House, S.D., Pena-Martin, P., Rockett, A.A., Robertson, I.M., Gupta, S., & Pecharsky, V.K. (2016). Towards Direct Synthesis of Alane: A Predicted Defect-Mediated Pathway Confirmed Experimentally. CHEMSUSCHEM, 9(17), 2358-2364.Wiley. doi: 10.1002/cssc.201600338.

Zhao, S., Zhang, H., House, S.D., Jin, R., Yang, J.C., Jin, R. (2016). Back Cover: Ultrasmall Palladium Nanoclusters as Effective Catalyst for Oxygen Reduction Reaction (ChemElectroChem 8/2016). ChemElectroChem, 3(8), 1274.Wiley. doi: 10.1002/celc.201600375.

Zhao, S., Zhang, H., House, S.D., Jin, R., Yang, J.C., Jin, R. (2016). Ultrasmall Palladium Nanoclusters as Effective Catalyst for Oxygen Reduction Reaction. CHEMELECTROCHEM, 3(8), 1225-1229.Wiley. doi: 10.1002/celc.201600053.

Bonifacio, C.S., Carenco, S., Wu, C.H., House, S.D., Bluhm, H., & Yang, J.C. (2015). Thermal Stability of Core-Shell Nanoparticles: A Combined in Situ Study by XPS and TEM. CHEMISTRY OF MATERIALS, 27(20), 6960-6968.American Chemical Society (ACS). doi: 10.1021/acs.chemmater.5b01862.

House, S.D., Li, L., Schamp, C.T., Henry, R., Su, D., Stach, E., & Yang, J.C. (2015). Development of Quantitative STEM for a Conventional S/TEM and Real-Time Current Calibration for Performing QSTEM with a Cold Field Emission Gun. Microscopy and Microanalysis, 21(S3), 2127-2128.Cambridge University Press (CUP). doi: 10.1017/s1431927615011411.

House, S.D., Vajo, J.J., Ren, C., Rockett, A.A., & Robertson, I.M. (2015). Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials. ACTA MATERIALIA, 86, 55-68.Elsevier BV. doi: 10.1016/j.actamat.2014.11.047.

House, S.D., Liu, X., Rockett, A.A., Majzoub, E.H., & Robertson, I.M. (2014). Characterization of the Dehydrogenation Process of LiBH4 Confined in Nanoporous Carbon. JOURNAL OF PHYSICAL CHEMISTRY C, 118(17), 8843-8851.American Chemical Society (ACS). doi: 10.1021/jp4098205.

Liu, G.S., House, S.D., Kacher, J., Tanaka, M., Higashida, K., & Robertson, I.M. (2014). Electron tomography of dislocation structures. MATERIALS CHARACTERIZATION, 87, 1-11.Elsevier BV. doi: 10.1016/j.matchar.2013.09.016.

Kacher, J., Elizaga, P., House, S.D., Hattar, K., Nowell, M., & Robertson, I.M. (2013). Thermal stability of Ni/NiO multilayers. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 568, 49-60.Elsevier BV. doi: 10.1016/j.msea.2013.01.033.

Wei, H., House, S., Wu, J., Zhang, J., Wang, Z., He, Y., Gao, E.J., Gao, Y., Robinson, H., Li, W., Zuo, J., Robertson, I.M., & Lu, Y. (2013). Enhanced and tunable fluorescent quantum dots within a single crystal of protein. NANO RESEARCH, 6(9), 627-634.Springer Science and Business Media LLC. doi: 10.1007/s12274-013-0348-0.

House, S., Majzoub, E., Bhakta, R., Allendorf, M., & Robertson, I. (2011). Electron Tomographic Characterization of Nano-Confined Hydrides for Hydrogen Storage. Microscopy and Microanalysis, 17(S2), 1610-1611.Cambridge University Press (CUP). doi: 10.1017/s1431927611008920.

Jacobs, B.W., Houk, R.J.T., Anstey, M.R., House, S.D., Robertson, I.M., Talin, A.A., & Allendorf, M.D. (2011). Back matter. Chemical Science, 2(12), 2428.Royal Society of Chemistry (RSC). doi: 10.1039/c1sc90050a.

Jacobs, B.W., Houk, R.J.T., Anstey, M.R., House, S.D., Robertson, I.M., Talin, A.A., & Allendorf, M.D. (2011). Ordered metal nanostructure self-assembly using metal-organic frameworks as templates. CHEMICAL SCIENCE, 2(3), 411-416.Royal Society of Chemistry (RSC). doi: 10.1039/c0sc00377h.

Wei, H., Wang, Z., Zhang, J., House, S., Gao, Y.G., Yang, L., Robinson, H., Tan, L.H., Xing, H., Hou, C., Robertson, I.M., Zuo, J.M., & Lu, Y. (2011). Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. NATURE NANOTECHNOLOGY, 6(2), 93-97.Springer Science and Business Media LLC. doi: 10.1038/nnano.2010.280.

Houk, R.J.T., Jacobs, B.W., El Gabaly, F., Chang, N.N., Talin, A.A., Graham, D.D., House, S.D., Robertson, I.M., & Allendorf, M.D. (2009). Silver Cluster Formation, Dynamics, and Chemistry in Metal-Organic Frameworks. NANO LETTERS, 9(10), 3413-3418.American Chemical Society (ACS). doi: 10.1021/nl901397k.

Yang, J., House, S., Chen, Y., Su, D., Schamp, T., Henry, R., Stach, E., & Jin, R. Quantitative STEM Atom Counting in Supported Metal Nanoparticles. 607-608.Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/9783527808465.emc2016.6891.

Sun, X., Wu, D., Zhu, W., Li, M., Yang, W.C., House, S., Chen, X., Sharma, R., Yang, J., & Zhou, G. (2020). In-situ Atomic-scale Visualization of Autocatalytic Reduction of CuO with H2. In Microscopy and Microanalysis, 26(S2), (pp. 3048-3050).Cambridge University Press (CUP). doi: 10.1017/s1431927620023648.

Chi, H., Li, M., Curnan, M., Andolina, C.M., Yang, J., Veser, G., & House, S. (2019). Atomically Resolved in Situ investigation of C1120 Reduction with Methanol. In 12th Natural Gas Conversion Symposium 2019, (pp. 419-421).

Zhao, S., Zhang, H., House, S., Jin, R., Yang, J., Jin, R. (2016). Ultrasmall palladium nanoclusters as effective catalyst for oxygen reduction reaction. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 252.