Ph.D. in Chemical Engineering, Syracuse University, 2014
B.S. in Bioengineering, Syracuse University, 2009
Lieber, A., Hildebrandt, M., Davidson, S.L., Rivero, J., Usman, H., Niepa, T.H.R., & Hornbostel, K. (2023). Demonstration of direct ocean carbon capture using encapsulated solvents. CHEMICAL ENGINEERING JOURNAL, 470, 144140.Elsevier. doi: 10.1016/j.cej.2023.144140.
Balmuri, S.R., Phandanouvong-Lozano, V., House, S.D., Yang, J.C., & Niepa, T.H.R. (2022). Mucoid Coating Provides a Growth Advantage to Pseudomonas aeruginosa at Oil-Water Interfaces. ACS Appl Bio Mater, 5(5), 1868-1878.American Chemical Society (ACS). doi: 10.1021/acsabm.1c01198.
Davidson, S.L., & Niepa, T.H.R. (2022). Controlling Microbial Dynamics through Selective Solute Transport across Functional Nanocultures. ACS APPLIED POLYMER MATERIALS, 4(5), 2999-3012.American Chemical Society (ACS). doi: 10.1021/acsapm.1c01422.
Uzoukwu, E.U., Phandanouvong-Lozano, V., Usman, H., Sfeir, C.S., & Niepa, T.H.R. (2022). Droplet-based microsystems as novel assessment tools for oral microbial dynamics. Biotechnol Adv, 55, 107903.Elsevier. doi: 10.1016/j.biotechadv.2021.107903.
Balmuri, S.R., Keck, N.C., & Niepa, T.H.R. (2021). Assessing the performance of wax-based microsorbents for oil remediation. Colloids and Surfaces A Physicochemical and Engineering Aspects, 627, 127227.Elsevier. doi: 10.1016/j.colsurfa.2021.127227.
Davidson, S.L., & Niepa, T.H.R. (2021). Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments. Front Microbiol, 12, 745835.Frontiers. doi: 10.3389/fmicb.2021.745835.
Usman, H., Davidson, S.L., Manimaran, N.H., Nguyen, J.T., Seth, R., Beckman, E., & Niepa, T.H.R. (2021). Design of a well-defined poly(dimethylsiloxane)-based microbial nanoculture system. MATERIALS TODAY COMMUNICATIONS, 27, 102185.Elsevier. doi: 10.1016/j.mtcomm.2021.102185.
Balmuri, S.R., Waters, N.G., Hegemann, J., Kierfeld, J., & Niepa, T.H.R. (2020). Material properties of interfacial films of mucoid and nonmucoid Pseudomonas aeruginosa isolates. Acta Biomater, 118, 129-140.Elsevier. doi: 10.1016/j.actbio.2020.10.010.
Manimaran, N.H., Usman, H., Kamga, K.L., Davidson, S.L., Beckman, E., & Niepa, T.H.R. (2020). Developing a Functional Poly(dimethylsiloxane)-Based Microbial Nanoculture System Using Dimethylallylamine. ACS Appl Mater Interfaces, 12(45), 50581-50591.American Chemical Society (ACS). doi: 10.1021/acsami.0c11875.
Parry-Nweye, E., Onukwugha, N.E., Balmuri, S.R., Shane, J.L., Kim, D., Koo, H., & Niepa, T.H.R. (2019). Electrochemical Strategy for Eradicating Fluconazole-Tolerant Candida albicans Using Implantable Titanium. ACS Appl Mater Interfaces, 11(44), 40997-41008.American Chemical Society (ACS). doi: 10.1021/acsami.9b09977.
Kim, D., Sengupta, A., Niepa, T.H.R., Lee, B.H., Weljie, A., Freitas-Blanco, V.S., Murata, R.M., Stebe, K.J., Lee, D., & Koo, H. (2017). Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep, 7(1), 41332.Springer Nature. doi: 10.1038/srep41332.
Niepa, T.H.R., Hou, L., Jiang, H., Goulian, M., Koo, H., Stebe, K.J., & Lee, D. (2017). Corrigendum: Microbial Nanoculture as an Artificial Microniche. Sci Rep, 7(1), 42568.Springer Nature. doi: 10.1038/srep42568.
Niepa, T.H.R., Wang, H., Gilbert, J.L., & Ren, D. (2017). Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes. Acta Biomater, 50, 344-352.Elsevier. doi: 10.1016/j.actbio.2016.12.053.
Vaccari, L., Molaei, M., Niepa, T.H.R., Lee, D., Leheny, R.L., & Stebe, K.J. (2017). Films of bacteria at interfaces. Adv Colloid Interface Sci, 247, 561-572.Elsevier. doi: 10.1016/j.cis.2017.07.016.
Hann, S.D., Niepa, T.H.R., Stebe, K.J., & Lee, D. (2016). One-Step Generation of Cell-Encapsulating Compartments via Polyelectrolyte Complexation in an Aqueous Two Phase System. ACS Appl Mater Interfaces, 8(38), 25603-25611.American Chemical Society (ACS). doi: 10.1021/acsami.6b07939.
Murphy, D., Gemmell, B., Vaccari, L., Li, C., Bacosa, H., Evans, M., Gemmell, C., Harvey, T., Jalali, M., & Niepa, T.H.R. (2016). An in-depth survey of the oil spill literature since 1968: Long term trends and changes since Deepwater Horizon. Mar Pollut Bull, 113(1-2), 371-379.Elsevier. doi: 10.1016/j.marpolbul.2016.10.028.
Niepa, T.H.R., Hou, L., Jiang, H., Goulian, M., Koo, H., Stebe, K.J., & Lee, D. (2016). Microbial Nanoculture as an Artificial Microniche. Sci Rep, 6(1), 30578.Springer Nature. doi: 10.1038/srep30578.
Niepa, T.H.R., Snepenger, L.M., Wang, H., Sivan, S., Gilbert, J.L., Jones, M.B., & Ren, D. (2016). Sensitizing Pseudomonas aeruginosa to antibiotics by electrochemical disruption of membrane functions. Biomaterials, 74, 267-279.Elsevier. doi: 10.1016/j.biomaterials.2015.10.007.
Niepa, T.H.R., Wang, H., Dabrowiak, J.C., Gilbert, J.L., & Ren, D. (2016). Synergy between tobramycin and trivalent chromium ion in electrochemical control of Pseudomonas aeruginosa. Acta Biomater, 36, 286-295.Elsevier. doi: 10.1016/j.actbio.2016.03.028.
Niepa, T.H.R., Gilbert, J.L., & Ren, D. (2012). Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin. Biomaterials, 33(30), 7356-7365.Elsevier. doi: 10.1016/j.biomaterials.2012.06.092.
Szkotak, R., Niepa, T.H.R., Jawrani, N., Gilbert, J.L., Jones, M.B., & Ren, D. (2011). Differential Gene Expression to Investigate the Effects of Low-level Electrochemical Currents on Bacillus subtilis. AMB Express, 1(1), 39.Springer Nature. doi: 10.1186/2191-0855-1-39.
Niepa, T.H.R. (2019). Multifunctional nanoculture systems for studying microbial dynamics. In AfroBiotech Conference 2019, (p. 24).
Niepa, T.H.R. (2016). Designing novel interfaces to control beneficial and pathogenic microbes. In Meet the Faculty Candidate Poster Session 2016 - Sponsored by the Education Division - Topical Conference at the 2016 AIChE Annual Meeting, (pp. 227-230).