headshot of Nathan Youngblood

Nathan Youngblood

Assistant Professor
Personal Website Google Scholar Electrical and Computer Engineering

overview

Dr. Youngblood is an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Pittsburgh. Prior to Pitt, he was a postdoctoral researcher at the University of Oxford where he developed phase-change optical systems and photonic architectures for non-von Neumann computing. Dr. Youngblood is a recipient of the NSF CAREER and AFOSR Young Investigator awards and leads the Youngblood Photonics Lab at Pitt, whose goal is to develop reconfigurable photonic materials, devices, and architectures which have potential to transform the field of artificial intelligence by minimizing computing latency and energy consumption. His work has been published in leading journals such as Nature, Nature Photonics, and Science Advances, and featured in popular news outlets such as The Times and the Daily Mail.

about

PhD, Electrical and Computer Engineering, University of Minnesota, 2012 - 2016

MSc, Electrical and Computer Engineering, University of Minnesota, 2012 - 2015

BS, Physics, Bethel University, 2007 - 2011

Gholipour, B., Youngblood, N., Wang, Q., Wu, P.C., Barclay, P., & Ou, J.Y. (2024). Reconfigurable photonic platforms: feature issue introduction. OPTICAL MATERIALS EXPRESS, 14(1), 236-239.Optica Publishing Group. doi: 10.1364/OME.510620.

Kari, S.R., Nobile, N.A., Pantin, D., Shah, V., & Youngblood, N. (2024). Realization of an integrated coherent photonic platform for scalable matrix operations. OPTICA, 11(4), 542-551.Optica Publishing Group. doi: 10.1364/OPTICA.507525.

Kari, S.R., Tamura, M., Guo, Z., Huang, Y.S., Sun, H., Lian, C., Nobile, N., Erickson, J., Moridsadat, M., Ocampo, C.A.R., Shastri, B.J., & Youngblood, N. (2024). High-Speed Multifunctional Photonic Memory on a Foundry-Processed Photonic Platform.

Pintus, P., Dumont, M., Shah, V., Murai, T., Shoji, Y., Huang, D., Moody, G., Bowers, J.E., & Youngblood, N. (2024). Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. NATURE PHOTONICS, 1-9.Springer Nature. doi: 10.1038/s41566-024-01549-1.

Shah, V., & Youngblood, N. (2024). Leveraging Continuously Differentiable Activation Functions for Learning in Quantized Noisy Environments.

Erickson, J.R., Nobile, N.A., Vaz, D., Vinod, G., Ocampo, C.A.R., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2023). Comparing the thermal performance and endurance of resistive and PIN silicon microheaters for phase-change photonic applications. OPTICAL MATERIALS EXPRESS, 13(6), 1677-1688.Optica Publishing Group. doi: 10.1364/OME.488564.

Kari, S.R., Ocampo, C.A.R.A., Jiang, L., Meng, J., Peserico, N., Sorger, V.J.J., Hu, J., & Youngblood, N. (2023). Optical and Electrical Memories for Analog Optical Computing. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 29(2), 1-12.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2023.3239918.

Nobile, N.A., Erickson, J.R., Ríos, C., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2023). Time-Resolved Temperature Mapping Leveraging the Strong Thermo-Optic Effect in Phase-Change Materials. ACS Photonics, 10(10), 3576-3585.American Chemical Society (ACS). doi: 10.1021/acsphotonics.3c00620.

Nobile, N.A., Lian, C., Sun, H., Huang, Y.S., Mills, B., Popescu, C.C., Callahan, D., Hu, J., Ocampo, C.A.R., & Youngblood, N. (2023). Nonvolatile tuning of Bragg structures using transparent phase-change materials. OPTICAL MATERIALS EXPRESS, 13(10), 2700-2710.Optica Publishing Group. doi: 10.1364/OME.498931.

Shah, V., & Youngblood, N. (2023). AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks. APL Machine Learning, 1(2), 026116.AIP Publishing. doi: 10.1063/5.0134156.

Youngblood, N. (2023). Coherent Photonic Crossbar Arrays for Large-Scale Matrix-Matrix Multiplication. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 29(2), 1-11.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2022.3171167.

Youngblood, N., Rios Ocampo, C.A., Pernice, W.H.P., & Bhaskaran, H. (2023). Integrated optical memristors. NATURE PHOTONICS, 17(7), 561-572.Springer Nature. doi: 10.1038/s41566-023-01217-w.

Zhou, W., Dong, B., Farmakidis, N., Li, X., Youngblood, N., Huang, K., He, Y., David Wright, C., Pernice, W.H.P., & Bhaskaran, H. (2023). In-memory photonic dot-product engine with electrically programmable weight banks. Nat Commun, 14(1), 2887.Springer Nature. doi: 10.1038/s41467-023-38473-x.

Erickson, J.R., Shah, V., Wan, Q., Youngblood, N., & Xiong, F. (2022). Designing fast and efficient electrically driven phase change photonics using foundry compatible waveguide-integrated microheaters. Opt Express, 30(8), 13673-13689.Optica Publishing Group. doi: 10.1364/OE.446984.

Farmakidis, N., Youngblood, N., Lee, J.S., Feldmann, J., Lodi, A., Li, X., Aggarwal, S., Zhou, W., Bogani, L., Pernice, W.H., Wright, C.D., & Bhaskaran, H. (2022). Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials. Adv Sci (Weinh), 9(20), e2200383.Wiley. doi: 10.1002/advs.202200383.

Lian, C., Vagionas, C., Alexoudi, T., Pleros, N., Youngblood, N., & Ríos, C. (2022). Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics, 11(17), 3823-3854.De Gruyter. doi: 10.1515/nanoph-2022-0089.

Tan, J.Y.S., Cheng, Z., Feldmann, J., Li, X., Youngblood, N., Ali, U.E., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2022). Monadic Pavlovian associative learning in a backpropagation-free photonic network. OPTICA, 9(7), 792-802.Optica Publishing Group. doi: 10.1364/OPTICA.455864.

Youngblood, N., Talagrand, C., Porter, B.F., Galante, C.G., Kneepkens, S., Triggs, G., Sarwat, S.G., Yarmolich, D., Bonilla, R.S., Hosseini, P., Taylor, R.A., & Bhaskaran, H. (2022). Reconfigurable Low-Emissivity Optical Coating Using Ultrathin Phase Change Materials. ACS PHOTONICS, 9(1), 90-100.American Chemical Society (ACS). doi: 10.1021/acsphotonics.1c01128.

Farmakidis, N., Swett, J.L., Youngblood, N., Li, X., Evangeli, C., Aggarwal, S., Mol, J.A., & Bhaskaran, H. (2021). Exploiting rotational asymmetry for sub-50 nm mechanical nanocalligraphy. Microsyst Nanoeng, 7(1), 84.Springer Nature. doi: 10.1038/s41378-021-00300-y.

Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., & Bhaskaran, H. (2021). Parallel convolutional processing using an integrated photonic tensor core. Nature, 589(7840), 52-58.Springer Nature. doi: 10.1038/s41586-020-03070-1.

Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., & Bhaskaran, H. (2021). Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core. Nature, 591(7849), E13.Springer Nature. doi: 10.1038/s41586-021-03216-9.

Ma, X., Youngblood, N., Liu, X., Cheng, Y., Cunha, P., Kudtarkar, K., Wang, X., & Lan, S. (2021). Engineering photonic environments for two-dimensional materials. NANOPHOTONICS, 10(3), 1031-1058.De Gruyter. doi: 10.1515/nanoph-2020-0524.

Feldmann, J., Youngblood, N., Li, X., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2020). Integrated 256 Cell Photonic Phase-Change Memory With 512-Bit Capacity. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 26(2), 1-7.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2019.2956871.

He, Q., Youngblood, N., Cheng, Z., Miao, X., & Bhaskaran, H. (2020). Dynamically tunable transmissive color filters using ultra-thin phase change materials. Opt Express, 28(26), 39841-39849.Optica Publishing Group. doi: 10.1364/OE.411874.

Li, X., Youngblood, N., Cheng, Z., Carrillo, S.G.C., Gemo, E., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2020). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. OPTICA, 7(3), 218-225.Optica Publishing Group. doi: 10.1364/OPTICA.379228.

Li, X., Youngblood, N., Cheng, Z., Carrillo, S.G.C., Gemo, E., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2020). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing: erratum. Optica, 7(12), 1804.Optica Publishing Group. doi: 10.1364/optica.414370.

Shen, Y., Yang, X., Naidoo, D., Fu, X., & Forbes, A. (2020). Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum. Optica, 7(12), 1705.Optica Publishing Group. doi: 10.1364/optica.414397.

Carrillo, S.G.C., Gemo, E., Li, X., Youngblood, N., Katumba, A., Bienstman, P., Pernice, W., Bhaskaran, H., & Wright, C.D. (2019). Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications. APL MATERIALS, 7(9), 091113.AIP Publishing. doi: 10.1063/1.5111840.

Farmakidis, N., Youngblood, N., Li, X., Tan, J., Swett, J.L., Cheng, Z., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv, 5(11), eaaw2687.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaw2687.

Feldmann, J., Youngblood, N., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2019). All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755), 208-214.Springer Nature. doi: 10.1038/s41586-019-1157-8.

Gemo, E., Carrillo, S.G.C., De Galarreta, C.R., Baldycheva, A., Hayat, H., Youngblood, N., Bhaskaran, H., Pernice, W.H.P., & Wright, C.D. (2019). Plasmonically-enhanced all-optical integrated phase-change memory. Opt Express, 27(17), 24724-24737.Optica Publishing Group. doi: 10.1364/OE.27.024724.

Ghazi Sarwat, S., Cheng, Z., Youngblood, N., Sharizal Alias, M., Sinha, S., Warner, J., & Bhaskaran, H. (2019). Strong Opto-Structural Coupling in Low Dimensional GeSe3 Films. Nano Lett, 19(10), 7377-7384.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.9b03039.

Li, X., Youngblood, N., Rios, C., Cheng, Z., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. OPTICA, 6(1), 1-6.Optica Publishing Group. doi: 10.1364/OPTICA.6.000001.

Li, X., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Non-volatile silicon photonic memory with more than 4-bit per cell capability.

Ríos, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C.D., Sebastian, A., & Bhaskaran, H. (2019). In-memory computing on a photonic platform. Sci Adv, 5(2), eaau5759.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aau5759.

Youngblood, N., Rios, C., Gemo, E., Feldmann, J., Cheng, Z., Baldycheva, A., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2019). Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics. ADVANCED FUNCTIONAL MATERIALS, 29(11).Wiley. doi: 10.1002/adfm.201807571.

Youngblood, N., Talagrand, C., Porter, B., Galante, C.G., Kneepkens, S., Sarwat, S.G., Yarmolich, D., Bonilla, R.S., Hosseini, P., Taylor, R., & Bhaskaran, H. (2019). Broadly-tunable smart glazing using an ultra-thin phase-change material.

Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials. Adv Mater, 30(32), e1802435.Wiley. doi: 10.1002/adma.201802435.

Rios, C., Stegmaier, M., Cheng, Z., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. OPTICAL MATERIALS EXPRESS, 8(9), 2455-2470.Optica Publishing Group. doi: 10.1364/OME.8.002455.

Sarwat, S.G., Youngblood, N., Au, Y.Y., Mol, J.A., Wright, C.D., & Bhaskaran, H. (2018). Engineering Interface-Dependent Photoconductivity in Ge2Sb2Te5 Nanoscale Devices. ACS Appl Mater Interfaces, 10(51), 44906-44914.American Chemical Society (ACS). doi: 10.1021/acsami.8b17602.

Chen, C., Youngblood, N., Peng, R., Yoo, D., Mohr, D.A., Johnson, T.W., Oh, S.H., & Li, M. (2017). Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. Nano Lett, 17(2), 985-991.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.6b04332.

Peng, R., Khaliji, K., Youngblood, N., Grassi, R., Low, T., & Li, M. (2017). Midinfrared Electro-optic Modulation in Few-Layer Black Phosphorus. Nano Lett, 17(10), 6315-6320.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.7b03050.

Xu, M., Gu, Y., Peng, R., Youngblood, N., & Li, M. (2017). Black phosphorus mid-infrared photodetectors. APPLIED PHYSICS B-LASERS AND OPTICS, 123(4), 130.Springer Nature. doi: 10.1007/s00340-017-6698-7.

Youngblood, N., & Li, M. (2017). Ultrafast photocurrent measurements of a black phosphorus photodetector. APPLIED PHYSICS LETTERS, 110(5), 051102.AIP Publishing. doi: 10.1063/1.4975360.

Youngblood, N., & Li, M. (2017). Integration of 2D materials on a silicon photonics platform for optoelectronics applications. NANOPHOTONICS, 6(6), 1205-1218.De Gruyter. doi: 10.1515/nanoph-2016-0155.

Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2017). Layer-Tunable Third-Harmonic Generation in Multilayer Black Phosphorus. ACS PHOTONICS, 4(1), 8-14.American Chemical Society (ACS). doi: 10.1021/acsphotonics.6b00639.

Lee, S.C., Youngblood, N., Jiang, Y.B., Peterson, E.J., Stark, C.J.M., Detchprohm, T., Wetzel, C., & Brueck, S.R.J. (2015). Incorporation of indium on cubic GaN epitaxially induced on a nanofaceted Si(001) substrate by phase transition. APPLIED PHYSICS LETTERS, 107(23), 231905.AIP Publishing. doi: 10.1063/1.4936772.

Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. NATURE PHOTONICS, 9(4), 247-252.Springer Nature. doi: 10.1038/NPHOTON.2015.23.

Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett, 14(5), 2741-2746.American Chemical Society (ACS). doi: 10.1021/nl500712u.

Zheng, M., Chu, C., Lou, Q., Youngblood, N., Li, M., Moazeni, S., & Jiang, L. (2024). OFHE: An Electro-Optical Accelerator for Discretized TFHE. In Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design, (pp. 1-6).Association for Computing Machinery (ACM). doi: 10.1145/3665314.3670839.

Gemo, E., Carrillo, S.G.C., Faneca, J., de Galarreta, C.R., Hayat, H., Youngblood, N., Baldycheva, A., Pernice, W.H.P., Bhaskaran, H., & Wright, C.D. (2020). Sub-wavelength plasmonic-enhanced phase-change memory. In Adibi, A., Lin, S.Y., & Scherer, A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 11289, (p. 112891e-112891e-11).SPIE, the international society for optics and photonics. doi: 10.1117/12.2546031.

Li, X., Youngblood, N., Zhou, W., Feldmann, J., Swett, J., Aggarwal, S., Sebastian, A., Wright, C.D., Pernice, W., & Bhaskaran, H. (2020). On-chip Phase Change Optical Matrix Multiplication Core. In 2020 IEEE International Electron Devices Meeting (IEDM), 00, (pp. 7.5.1-7.5.4).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/iedm13553.2020.9372052.

Youngblood, N., Farmakidis, N., Li, X., & Bhaskaran, H. (2020). Nanoscale Optoelectronic Memory with Nonvolatile Phase-Change Photonics. In Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2020-May.

Zokaee, F., Lou, Q., Youngblood, N., Liu, W., Xie, Y., & Jiang, L. (2020). LightBulb: A Photonic-Nonvolatile-Memory-based Accelerator for Binarized Convolutional Neural Networks. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 00, (pp. 1438-1443).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.23919/date48585.2020.9116494.

David Wright, C., Bhaskaran, H., Wolfram, H.P.P., Carrillo, S.G.C., Gemo, E., Baldycheva, A., Cheng, Z., Li, X., Rios, C., Youngblood, N., Feldmann, J., Gruhler, N., & Stegmaier, M. (2019). Integrated Phase-change Photonics: A strategy for merging communication and computing. In Optics InfoBase Conference Papers, Part F160-OFC 2019.

Rios, C., Youngblood, N., Cheng, Z., Gallo, M.L., Pernice, W.H.P., Wright, C., Sebastian, A., & Bhaskaran, H. (2019). All-Photonic in-Memory Computing Based on Phase-Change Materials. In 2019 Conference on Lasers and Electro-Optics, CLEO 2019 - Proceedings. doi: 10.23919/CLEO.2019.8749826.

Rios, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C., Sebastian, A., & Bhaskaran, H. (2019). All-Photonic in-Memory Computing Based on Phase-Change Materials. In Conference on Lasers and Electro-Optics, Part F129-CLEO_SI 2019, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2019.sm2j.2.

Wright, C.D., Bhaskaran, H., Pernice, W.H.P., Carrillo, S.G.C., Gemo, E., Baldycheva, A., Cheng, Z., Li, X., Rios, C., Youngblood, N., Feldmann, J., Gruhler, N., & Stegmaier, M. (2019). Integrated Phase-change Photonics: A Strategy for Merging Communication and Computing. In Optical Fiber Communication Conference (OFC) 2019, (p. m1d.3).Optica Publishing Group. doi: 10.1364/ofc.2019.m1d.3.

Chen, C., Yoo, D., Youngblood, N., Oh, S.H., & Li, M. (2017). Mid-Infrared Plasmonic Coaxial Nanorings for Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy. In Conference on Lasers and Electro-Optics, 2017-January, (p. jth2a.36).Optica Publishing Group. doi: 10.1364/cleo_at.2017.jth2a.36.

Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2017). On-chip phase-change photonic memory and computing. In Subramania, G.S., & Foteinopoulou, S. (Eds.). In Active Photonic Platforms IX, 10345, (p. 1034519).SPIE, the international society for optics and photonics. doi: 10.1117/12.2272127.

Peng, R., Youngblood, N., & Li, M. (2017). Mid-Infrared Electro-Optic Modulation in Black Phosphorus. In Conference on Lasers and Electro-Optics, 2017-January, (p. fw4h.7).Optica Publishing Group. doi: 10.1364/cleo_qels.2017.fw4h.7.

Chen, C., Youngblood, N., Mohr, D., Yoo, D., Johnson, T., Peng, R., Oh, S.H., & Li, M. (2016). Black Phosphorus Photodetector on Silicon Photonic and Plasmonic Hybrid Platform. In Conference on Lasers and Electro-Optics, (p. sm4e.6).Optica Publishing Group. doi: 10.1364/cleo_si.2016.sm4e.6.

Youngblood, N., & Li, M. (2016). Ultrafast Photocurrent Spectroscopy in a Black Phosphorus Van der Waals Heterostructure. In Conference on Lasers and Electro-Optics, (p. stu1r.4).Optica Publishing Group. doi: 10.1364/cleo_si.2016.stu1r.4.

Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2016). Thickness dependent third-harmonic generation in few-layer black phosphorus. In Conference on Lasers and Electro-Optics, (p. jth4c.9).Optica Publishing Group. doi: 10.1364/cleo_at.2016.jth4c.9.

Chen, C., Youngblood, N., & Li, M. (2015). Study of Black Phosphorus Anisotropy on Silicon Photonic Waveguide. In 2015 Optoelectronics Global Conference (OGC), (pp. 1-3).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/ogc.2015.7336864.

Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). A black phosphorus FET integrated on a silicon waveguide for high speed, low dark current photodetection. In CLEO: 2015, 2015-August, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2015.sm3g.3.

Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). A black phosphorus FET integrated on a silicon waveguide for high speed, low dark current photodetection. In CLEO: Science and Innovations, CLEO-SI 2015, (p. 2267). doi: 10.1364/CLEO_SI.2015.SM3G.3.

Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Simultaneous optical modulation and detection using graphene integrated on a silicon waveguide. In Optics InfoBase Conference Papers.

Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Simultaneous optical modulation and detection using graphene integrated on a silicon waveguide. In CLEO: 2014, 2014-January, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2014.sth1m.3.

Research interests

2D materials and devices
In-memory computing
Machine learning
Phase-change photonics
Silicon photonics