PhD, Electrical and Computer Engineering, University of Minnesota, 2012 - 2016
MSc, Electrical and Computer Engineering, University of Minnesota, 2012 - 2015
BS, Physics, Bethel University, 2007 - 2011
Gholipour, B., Youngblood, N., Wang, Q., Wu, P.C., Barclay, P., & Ou, J.Y. (2024). Reconfigurable photonic platforms: feature issue introduction. OPTICAL MATERIALS EXPRESS, 14(1), 236-239.Optica Publishing Group. doi: 10.1364/OME.510620.
Kari, S.R., Nobile, N.A., Pantin, D., Shah, V., & Youngblood, N. (2024). Realization of an integrated coherent photonic platform for scalable matrix operations. OPTICA, 11(4), 542-551.Optica Publishing Group. doi: 10.1364/OPTICA.507525.
Kari, S.R., Tamura, M., Guo, Z., Huang, Y.S., Sun, H., Lian, C., Nobile, N., Erickson, J., Moridsadat, M., Ocampo, C.A.R., Shastri, B.J., & Youngblood, N. (2024). High-Speed Multifunctional Photonic Memory on a Foundry-Processed Photonic Platform.
Pintus, P., Dumont, M., Shah, V., Murai, T., Shoji, Y., Huang, D., Moody, G., Bowers, J.E., & Youngblood, N. (2024). Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. NATURE PHOTONICS, 1-9.Springer Nature. doi: 10.1038/s41566-024-01549-1.
Shah, V., & Youngblood, N. (2024). Leveraging Continuously Differentiable Activation Functions for Learning in Quantized Noisy Environments.
Erickson, J.R., Nobile, N.A., Vaz, D., Vinod, G., Ocampo, C.A.R., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2023). Comparing the thermal performance and endurance of resistive and PIN silicon microheaters for phase-change photonic applications. OPTICAL MATERIALS EXPRESS, 13(6), 1677-1688.Optica Publishing Group. doi: 10.1364/OME.488564.
Kari, S.R., Ocampo, C.A.R.A., Jiang, L., Meng, J., Peserico, N., Sorger, V.J.J., Hu, J., & Youngblood, N. (2023). Optical and Electrical Memories for Analog Optical Computing. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 29(2), 1-12.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2023.3239918.
Nobile, N.A., Erickson, J.R., Rios, C., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2023). Time-Resolved Temperature Mapping Leveraging the Strong Thermo-Optic Effect in Phase-Change Materials. ACS PHOTONICS, 10(10), 3576-3585.American Chemical Society (ACS). doi: 10.1021/acsphotonics.3c00620.
Nobile, N.A., Lian, C., Sun, H., Huang, Y.S., Mills, B., Popescu, C.C., Callahan, D., Hu, J., Ocampo, C.A.R., & Youngblood, N. (2023). Nonvolatile tuning of Bragg structures using transparent phase-change materials. OPTICAL MATERIALS EXPRESS, 13(10), 2700-2710.Optica Publishing Group. doi: 10.1364/OME.498931.
Shah, V., & Youngblood, N. (2023). AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks. APL Machine Learning, 1(2), 026116.AIP Publishing. doi: 10.1063/5.0134156.
Youngblood, N. (2023). Coherent Photonic Crossbar Arrays for Large-Scale Matrix-Matrix Multiplication. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 29(2), 1-11.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2022.3171167.
Youngblood, N., Rios Ocampo, C.A., Pernice, W.H.P., & Bhaskaran, H. (2023). Integrated optical memristors. NATURE PHOTONICS, 17(7), 561-572.Springer Nature. doi: 10.1038/s41566-023-01217-w.
Zhou, W., Dong, B., Farmakidis, N., Li, X., Youngblood, N., Huang, K., He, Y., David Wright, C., Pernice, W.H.P., & Bhaskaran, H. (2023). In-memory photonic dot-product engine with electrically programmable weight banks. NATURE COMMUNICATIONS, 14(1), 2887.Springer Nature. doi: 10.1038/s41467-023-38473-x.
Erickson, J.R., Shah, V., Wan, Q., Youngblood, N., & Xiong, F. (2022). Designing fast and efficient electrically driven phase change photonics using foundry compatible waveguide-integrated microheaters. OPTICS EXPRESS, 30(8), 13673-13689.Optica Publishing Group. doi: 10.1364/OE.446984.
Farmakidis, N., Youngblood, N., Lee, J.S., Feldmann, J., Lodi, A., Li, X., Aggarwal, S., Zhou, W., Bogani, L., Pernice, W.H., Wright, C.D., & Bhaskaran, H. (2022). Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials. ADVANCED SCIENCE, 9(20), 2200383.Wiley. doi: 10.1002/advs.202200383.
Lian, C., Vagionas, C., Alexoudi, T., Pleros, N., Youngblood, N., & Rios, C. (2022). Photonic (computational) memories: tunable nanophotonics for data storage and computing. NANOPHOTONICS, 11(17), 3823-3854.De Gruyter. doi: 10.1515/nanoph-2022-0089.
Tan, J.Y.S., Cheng, Z., Feldmann, J., Li, X., Youngblood, N., Ali, U.E., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2022). Monadic Pavlovian associative learning in a backpropagation-free photonic network. OPTICA, 9(7), 792-802.Optica Publishing Group. doi: 10.1364/OPTICA.455864.
Youngblood, N., Talagrand, C., Porter, B.F., Galante, C.G., Kneepkens, S., Triggs, G., Sarwat, S.G., Yarmolich, D., Bonilla, R.S., Hosseini, P., Taylor, R.A., & Bhaskaran, H. (2022). Reconfigurable Low-Emissivity Optical Coating Using Ultrathin Phase Change Materials. ACS PHOTONICS, 9(1), 90-100.American Chemical Society (ACS). doi: 10.1021/acsphotonics.1c01128.
Farmakidis, N., Swett, J.L., Youngblood, N., Li, X., Evangeli, C., Aggarwal, S., Mol, J.A., & Bhaskaran, H. (2021). Exploiting rotational asymmetry for sub-50 nm mechanical nanocalligraphy. MICROSYSTEMS & NANOENGINEERING, 7(1), 84.Springer Nature. doi: 10.1038/s41378-021-00300-y.
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., & Bhaskaran, H. (2021). Parallel convolutional processing using an integrated photonic tensor core. NATURE, 589(7840), 52-+.Springer Nature. doi: 10.1038/s41586-020-03070-1.
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., & Bhaskaran, H. (2021). Parallel convolutional processing using an integrated photonic tensor core (vol 589, pg 52, 2021). NATURE, 591(7849), E13.Springer Nature. doi: 10.1038/s41586-021-03216-9.
Ma, X., Youngblood, N., Liu, X., Cheng, Y., Cunha, P., Kudtarkar, K., Wang, X., & Lan, S. (2021). Engineering photonic environments for two-dimensional materials. NANOPHOTONICS, 10(3), 1031-1058.De Gruyter. doi: 10.1515/nanoph-2020-0524.
Feldmann, J., Youngblood, N., Li, X., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2020). Integrated 256 Cell Photonic Phase-Change Memory With 512-Bit Capacity. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 26(2), 1-7.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2019.2956871.
He, Q., Youngblood, N., Cheng, Z., Miao, X., & Bhaskaran, H. (2020). Dynamically tunable transmissive color filters using ultra-thin phase change materials. OPTICS EXPRESS, 28(26), 39841-39849.Optica Publishing Group. doi: 10.1364/OE.411874.
Li, X., Youngblood, N., Cheng, Z., Carrillo, S.G.C., Gemo, E., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2020). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. OPTICA, 7(3), 218-225.Optica Publishing Group. doi: 10.1364/OPTICA.379228.
Li, X., Youngblood, N., Cheng, Z., Carrillo, S.G.C., Gemo, E., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2020). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing: erratum. Optica, 7(12), 1804.Optica Publishing Group. doi: 10.1364/optica.414370.
Shen, Y., Yang, X., Naidoo, D., Fu, X., & Forbes, A. (2020). Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum. Optica, 7(12), 1705.Optica Publishing Group. doi: 10.1364/optica.414397.
Carrillo, S.G.C., Gemo, E., Li, X., Youngblood, N., Katumba, A., Bienstman, P., Pernice, W., Bhaskaran, H., & Wright, C.D. (2019). Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications. APL MATERIALS, 7(9), 091113.AIP Publishing. doi: 10.1063/1.5111840.
Farmakidis, N., Youngblood, N., Li, X., Tan, J., Swett, J.L., Cheng, Z., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. SCIENCE ADVANCES, 5(11), eaaw2687.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaw2687.
Feldmann, J., Youngblood, N., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2019). All-optical spiking neurosynaptic networks with self-learning capabilities. NATURE, 569(7755), 208-+.Springer Nature. doi: 10.1038/s41586-019-1157-8.
Gemo, E., Carrillo, S.G.C., DeGalarreta, C.R., Baldycheva, A., Hayat, H., Youngblood, N., Bhaskaran, H., Pernice, W.H.P., & Wright, C.D. (2019). Plasmonically-enhanced all-optical integrated phase-change memory. OPTICS EXPRESS, 27(17), 24724-+.Optica Publishing Group. doi: 10.1364/OE.27.024724.
Li, X., Youngblood, N., Rios, C., Cheng, Z., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. OPTICA, 6(1), 1-6.Optica Publishing Group. doi: 10.1364/OPTICA.6.000001.
Li, X., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Non-volatile silicon photonic memory with more than 4-bit per cell capability.
Rios, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C.D., Sebastian, A., & Bhaskaran, H. (2019). In-memory computing on a photonic platform. SCIENCE ADVANCES, 5(2), eaau5759.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aau5759.
Sarwat, S.G., Cheng, Z., Youngblood, N., Alias, M.S., Sinha, S., Warner, J., & Bhaskaran, H. (2019). Strong Opto-Structural Coupling in Low Dimensional GeSe3 Films. NANO LETTERS, 19(10), 7377-7384.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.9b03039.
Youngblood, N., Rios, C., Gemo, E., Feldmann, J., Cheng, Z., Baldycheva, A., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2019). Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics. ADVANCED FUNCTIONAL MATERIALS, 29(11).Wiley. doi: 10.1002/adfm.201807571.
Youngblood, N., Talagrand, C., Porter, B., Galante, C.G., Kneepkens, S., Sarwat, S.G., Yarmolich, D., Bonilla, R.S., Hosseini, P., Taylor, R., & Bhaskaran, H. (2019). Broadly-tunable smart glazing using an ultra-thin phase-change material.
Cheng, Z., Rios, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials. ADVANCED MATERIALS, 30(32), e1802435.Wiley. doi: 10.1002/adma.201802435.
Rios, C., Stegmaier, M., Cheng, Z., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. OPTICAL MATERIALS EXPRESS, 8(9), 2455-2470.Optica Publishing Group. doi: 10.1364/OME.8.002455.
Sarwat, S.G., Youngblood, N., Au, Y.Y., Mol, J.A., Wright, C.D., & Bhaskaran, H. (2018). Engineering Interface-Dependent Photoconductivity in Ge2Sb2Te5 Nanoscale Devices. ACS APPLIED MATERIALS & INTERFACES, 10(51), 44906-44914.American Chemical Society (ACS). doi: 10.1021/acsami.8b17602.
Chen, C., Youngblood, N., Peng, R., Yoo, D., Mohr, D.A., Johnson, T.W., Oh, S.H., & Li, M. (2017). Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. NANO LETTERS, 17(2), 985-991.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.6b04332.
Peng, R., Khaliji, K., Youngblood, N., Grassi, R., Low, T., & Li, M. (2017). Midinfrared Electro-optic Modulation in Few-Layer Black Phosphorus. NANO LETTERS, 17(10), 6315-6320.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.7b03050.
Xu, M., Gu, Y., Peng, R., Youngblood, N., & Li, M. (2017). Black phosphorus mid-infrared photodetectors. APPLIED PHYSICS B-LASERS AND OPTICS, 123(4), 130.Springer Nature. doi: 10.1007/s00340-017-6698-7.
Youngblood, N., & Li, M. (2017). Ultrafast photocurrent measurements of a black phosphorus photodetector. APPLIED PHYSICS LETTERS, 110(5), 051102.AIP Publishing. doi: 10.1063/1.4975360.
Youngblood, N., & Li, M. (2017). Integration of 2D materials on a silicon photonics platform for optoelectronics applications. NANOPHOTONICS, 6(6), 1205-1218.De Gruyter. doi: 10.1515/nanoph-2016-0155.
Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2017). Layer-Tunable Third-Harmonic Generation in Multilayer Black Phosphorus. ACS PHOTONICS, 4(1), 8-14.American Chemical Society (ACS). doi: 10.1021/acsphotonics.6b00639.
Lee, S.C., Youngblood, N., Jiang, Y.B., Peterson, E.J., Stark, C.J.M., Detchprohm, T., Wetzel, C., & Brueck, S.R.J. (2015). Incorporation of indium on cubic GaN epitaxially induced on a nanofaceted Si(001) substrate by phase transition. APPLIED PHYSICS LETTERS, 107(23), 231905.AIP Publishing. doi: 10.1063/1.4936772.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. NATURE PHOTONICS, 9(4), 247-252.Springer Nature. doi: 10.1038/NPHOTON.2015.23.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides. NANO LETTERS, 14(5), 2741-2746.American Chemical Society (ACS). doi: 10.1021/nl500712u.
Zheng, M., Chu, C., Lou, Q., Youngblood, N., Li, M., Moazeni, S., & Jiang, L. (2024). OFHE: An Electro-Optical Accelerator for Discretized TFHE. In Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design, (pp. 1-6).Association for Computing Machinery (ACM). doi: 10.1145/3665314.3670839.
Gemo, E., Carrillo, S.G.C., Faneca, J., de Galarreta, C.R., Hayat, H., Youngblood, N., Baldycheva, A., Pernice, W.H.P., Bhaskaran, H., & Wright, C.D. (2020). Sub-wavelength plasmonic-enhanced phase-change memory. In Adibi, A., Lin, S.Y., & Scherer, A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 11289, (p. 112891e-112891e-11).SPIE, the international society for optics and photonics. doi: 10.1117/12.2546031.
Li, X., Youngblood, N., Zhou, W., Feldmann, J., Swett, J., Aggarwal, S., Sebastian, A., Wright, C.D., Pernice, W., & Bhaskaran, H. (2020). On-chip Phase Change Optical Matrix Multiplication Core. In 2020 IEEE International Electron Devices Meeting (IEDM), 00, (pp. 7.5.1-7.5.4).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/iedm13553.2020.9372052.
Youngblood, N., Farmakidis, N., Li, X., & Bhaskaran, H. (2020). Nanoscale Optoelectronic Memory with Nonvolatile Phase-Change Photonics. In Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2020-May.
Zokaee, F., Lou, Q., Youngblood, N., Liu, W., Xie, Y., & Jiang, L. (2020). LightBulb: A Photonic-Nonvolatile-Memory-based Accelerator for Binarized Convolutional Neural Networks. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 00, (pp. 1438-1443).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.23919/date48585.2020.9116494.
David Wright, C., Bhaskaran, H., Wolfram, H.P.P., Carrillo, S.G.C., Gemo, E., Baldycheva, A., Cheng, Z., Li, X., Rios, C., Youngblood, N., Feldmann, J., Gruhler, N., & Stegmaier, M. (2019). Integrated Phase-change Photonics: A strategy for merging communication and computing. In Optics InfoBase Conference Papers, Part F160-OFC 2019.
Rios, C., Youngblood, N., Cheng, Z., Gallo, M.L., Pernice, W.H.P., Wright, C., Sebastian, A., & Bhaskaran, H. (2019). All-Photonic in-Memory Computing Based on Phase-Change Materials. In 2019 Conference on Lasers and Electro-Optics, CLEO 2019 - Proceedings. doi: 10.23919/CLEO.2019.8749826.
Rios, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C., Sebastian, A., & Bhaskaran, H. (2019). All-Photonic in-Memory Computing Based on Phase-Change Materials. In Conference on Lasers and Electro-Optics, Part F129-CLEO_SI 2019, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2019.sm2j.2.
Wright, C.D., Bhaskaran, H., Pernice, W.H.P., Carrillo, S.G.C., Gemo, E., Baldycheva, A., Cheng, Z., Li, X., Rios, C., Youngblood, N., Feldmann, J., Gruhler, N., & Stegmaier, M. (2019). Integrated Phase-change Photonics: A Strategy for Merging Communication and Computing. In Optical Fiber Communication Conference (OFC) 2019, (p. m1d.3).Optica Publishing Group. doi: 10.1364/ofc.2019.m1d.3.
Chen, C., Yoo, D., Youngblood, N., Oh, S.H., & Li, M. (2017). Mid-Infrared Plasmonic Coaxial Nanorings for Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy. In Conference on Lasers and Electro-Optics, 2017-January, (p. jth2a.36).Optica Publishing Group. doi: 10.1364/cleo_at.2017.jth2a.36.
Cheng, Z., RĂos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2017). On-chip phase-change photonic memory and computing. In Subramania, G.S., & Foteinopoulou, S. (Eds.). In Active Photonic Platforms IX, 10345, (p. 1034519).SPIE, the international society for optics and photonics. doi: 10.1117/12.2272127.
Peng, R., Youngblood, N., & Li, M. (2017). Mid-Infrared Electro-Optic Modulation in Black Phosphorus. In Conference on Lasers and Electro-Optics, 2017-January, (p. fw4h.7).Optica Publishing Group. doi: 10.1364/cleo_qels.2017.fw4h.7.
Chen, C., Youngblood, N., Mohr, D., Yoo, D., Johnson, T., Peng, R., Oh, S.H., & Li, M. (2016). Black Phosphorus Photodetector on Silicon Photonic and Plasmonic Hybrid Platform. In Conference on Lasers and Electro-Optics, (p. sm4e.6).Optica Publishing Group. doi: 10.1364/cleo_si.2016.sm4e.6.
Youngblood, N., & Li, M. (2016). Ultrafast Photocurrent Spectroscopy in a Black Phosphorus Van der Waals Heterostructure. In Conference on Lasers and Electro-Optics, (p. stu1r.4).Optica Publishing Group. doi: 10.1364/cleo_si.2016.stu1r.4.
Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2016). Thickness dependent third-harmonic generation in few-layer black phosphorus. In Conference on Lasers and Electro-Optics, (p. jth4c.9).Optica Publishing Group. doi: 10.1364/cleo_at.2016.jth4c.9.
Chen, C., Youngblood, N., & Li, M. (2015). Study of Black Phosphorus Anisotropy on Silicon Photonic Waveguide. In 2015 Optoelectronics Global Conference (OGC), (pp. 1-3).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/ogc.2015.7336864.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). A black phosphorus FET integrated on a silicon waveguide for high speed, low dark current photodetection. In CLEO: 2015, 2015-August, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2015.sm3g.3.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). A black phosphorus FET integrated on a silicon waveguide for high speed, low dark current photodetection. In CLEO: Science and Innovations, CLEO-SI 2015, (p. 2267). doi: 10.1364/CLEO_SI.2015.SM3G.3.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Simultaneous optical modulation and detection using graphene integrated on a silicon waveguide. In Optics InfoBase Conference Papers.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Simultaneous optical modulation and detection using graphene integrated on a silicon waveguide. In CLEO: 2014, 2014-January, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2014.sth1m.3.