PhD, Electrical and Computer Engineering, University of Minnesota, 2012 - 2016
MSc, Electrical and Computer Engineering, University of Minnesota, 2012 - 2015
BS, Physics, Bethel University, 2007 - 2011
Ríos Ocampo, C.A., & Youngblood, N. (2026). Multiplying matrices in a single pass with light. Nature Photonics, 20(1), 3-4.Springer Science and Business Media LLC. doi: 10.1038/s41566-025-01828-5.
Guo, Z., Aadhi, A., McCaughan, A.N., Tait, A.N., Youngblood, N., Buckley, S.M., & Shastri, B.J. (2025). Fully analog end-to-end online training with real-time adaptibility on integrated photonic platform. In arXiv. doi: 10.48550/arxiv.2506.18041.
He, Y., Cao, P.S., Hashemkhani, S., Liu, Y., Vaz, D., Joy, K., Youngblood, N., Kubendran, R., Anantram, M.P., & Xiong, F. (2025). Artificial Synapse with Tunable Dynamic Range for Neuromorphic Computing with Ion Intercalated Bilayer Graphene. In Research Square. doi: 10.21203/rs.3.rs-6838264/v1.
Kari, S.R., Pintus, P., Bowers, J.E., Robbins, M., & Youngblood, N. (2025). Enabling High-Bandwidth Coherent Modulation Through Scalable Lithium Niobate Resonant Devices. In arXiv. doi: 10.48550/arxiv.2502.10846.
Kari, S.R., Tamura, M., Guo, Z., Huang, Y.S., Sun, H., Lian, C., Nobile, N., Erickson, J., Moridsadat, M., Ocampo, C.A.R.L.O.S.A.R., Shastri, B.J., & Youngblood, N. (2025). High-speed multifunctional photonic memory on a foundry-processed photonic platform. OPTICA, 12(1), 31-38.Optica Publishing Group. doi: 10.1364/OPTICA.536866.
Lee, C.Y., Huang, Y.S., Adams, F., Lian, C., Sun, H., Zhao, J., Ye, Z., Youngblood, N., Hu, J., Allen, L.H., Mo, Y., Takeuchi, I., & Ocampo, C.A.R. (2025). Incorporating Si into Sb2Se3: Tailoring Optical Phase Change Materials via Nanocomposites. In arXiv. doi: 10.48550/arxiv.2510.14990.
Nobile, N.A., Shah, V., & Youngblood, N. (2025). Flexible testbed for prototyping photonic processors. Opt Express, 33(21), 45154-45170.Optica Publishing Group. doi: 10.1364/OE.566311.
Pintus, P., Dumont, M., Shah, V., Murai, T., Shoji, Y., Huang, D., Moody, G., Bowers, J.E., & Youngblood, N. (2025). Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. NATURE PHOTONICS, 19(1), 54-62.Springer Nature. doi: 10.1038/s41566-024-01549-1.
Shah, V., & Youngblood, N. (2025). Leveraging Continuously Differentiable Activation for Learning in Analog and Quantized Noisy Environments. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 31(3).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2025.3534636.
Sun, H., Lian, C., Vásquez-Aza, F., Rahimi Kari, S., Huang, Y.S., Restelli, A., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., Pavlidis, G., & Ríos Ocampo, C.A. (2025). Microheater hotspot engineering for spatially resolved and repeatable multi-level switching in foundry-processed phase change silicon photonics. Nat Commun, 16(1), 4291.Springer Nature. doi: 10.1038/s41467-025-59399-6.
Gholipour, B., Youngblood, N., Wang, Q., Wu, P.C., Barclay, P., & Ou, J.Y. (2024). Reconfigurable photonic platforms: feature issue introduction. OPTICAL MATERIALS EXPRESS, 14(1), 236-239.Optica Publishing Group. doi: 10.1364/OME.510620.
Kari, S.R., Nobile, N.A., Pantin, D., Shah, V., & Youngblood, N. (2024). Realization of an integrated coherent photonic platform for scalable matrix operations. OPTICA, 11(4), 542-551.Optica Publishing Group. doi: 10.1364/OPTICA.507525.
Kari, S.R., Tamura, M., Guo, Z., Huang, Y.S., Sun, H., Lian, C., Nobile, N., Erickson, J., Moridsadat, M., Ocampo, C.A.R., Shastri, B.J., & Youngblood, N. (2024). High-Speed Multifunctional Photonic Memory on a Foundry-Processed Photonic Platform. doi: 10.48550/arxiv.2409.13954.
Ocampo, C.A.R., & Youngblood, N. (2024). 4 Configuring phase-change materials for photonics. In Phase Change Materials-Based Photonic Computing. (pp. 67-117).Elsevier. doi: 10.1016/b978-0-12-823491-4.00004-7.
Ocampo, C.A.R., Sun, H., Lian, C., Vásquez-Aza, F., Kari, S.R., Huang, Y.S., Restelli, A., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., & Pavlidis, G. (2024). Microheater hotspot engineering for repeatable multi-level switching in foundry-processed phase change silicon photonics. In Research Square. doi: 10.21203/rs.3.rs-4631376/v1.
Shah, V., & Youngblood, N. (2024). Leveraging Continuously Differentiable Activation Functions for Learning in Quantized Noisy Environments. doi: 10.48550/arxiv.2402.02593.
Sun, H., Lian, C., Vásquez-Aza, F., Kari, S.R., Huang, Y.S., Restelli, A., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., Pavlidis, G., & Ocampo, C.A.R. (2024). Microheater hotspot engineering for repeatable multi-level switching in foundry-processed phase change silicon photonics. In arXiv. doi: 10.48550/arxiv.2407.00059.
Upcraft, D., Vaz, D., Youngblood, N., & Oh, S.H. (2024). Efficient TE-polarized mode coupling between a plasmonic tunnel junction and a photonic waveguide. OPTICS EXPRESS, 32(26), 47574-47588.Optica Publishing Group. doi: 10.1364/OE.543072.
Youngblood, N., Wang, Q., Simpson, R.E., & Hu, J. (2024). Special Section Guest Editorial: Phase-Change Reconfigurable Photonics. JOURNAL OF OPTICAL MICROSYSTEMS, 4(3).SPIE, the international society for optics and photonics. doi: 10.1117/1.JOM.4.3.031201.
Zheng, M., Chu, C., Lou, Q., Youngblood, N., Li, M., Moazeni, S., & Jiang, L. (2024). OFHE: An Electro-Optical Accelerator for Discretized TFHE. In arXiv. doi: 10.48550/arxiv.2405.11607.
Erickson, J.R., Nobile, N.A., Vaz, D., Vinod, G., Ocampo, C.A.R., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2023). Comparing the thermal performance and endurance of resistive and PIN silicon microheaters for phase-change photonic applications. OPTICAL MATERIALS EXPRESS, 13(6), 1677-1688.Optica Publishing Group. doi: 10.1364/OME.488564.
Gholipour, B., Barclay, P., Ou, J.Y., Qian, W., Wu, P.C., & Youngblood, N. (2023). Reconfigurable Photonic Platforms feature issue: publisher's note (vol 13, pg 2489, 2023). OPTICAL MATERIALS EXPRESS, 13(9), 2699.Optica Publishing Group. doi: 10.1364/OME.504314.
Kari, S.R., Ocampo, C.A.R.A., Jiang, L., Meng, J., Peserico, N., Sorger, V.J.J., Hu, J., & Youngblood, N. (2023). Optical and Electrical Memories for Analog Optical Computing. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 29(2).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2023.3239918.
Nobile, N.A., Erickson, J.R., Ríos, C., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2023). Time-Resolved Temperature Mapping Leveraging the Strong Thermo-Optic Effect in Phase-Change Materials. ACS Photonics, 10(10), 3576-3585.American Chemical Society (ACS). doi: 10.1021/acsphotonics.3c00620.
Nobile, N.A., Lian, C., Sun, H., Huang, Y.S., Mills, B., Popescu, C.C., Callahan, D., Hu, J., Ocampo, C.A.R., & Youngblood, N. (2023). Nonvolatile tuning of Bragg structures using transparent phase-change materials. OPTICAL MATERIALS EXPRESS, 13(10), 2700-2710.Optica Publishing Group. doi: 10.1364/OME.498931.
Nobile, N.A., Lian, C., Sun, H., Huang, Y.S., Mills, B., Popescu, C.C., Callahan, D., Hu, J., Ocampo, C.A.R., & Youngblood, N. (2023). Nonvolatile Tuning of Bragg Structures Using Transparent Phase-Change Materials. In arXiv. doi: 10.48550/arxiv.2306.14865.
Shah, V., & Youngblood, N. (2023). AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks. APL MACHINE LEARNING, 1(2).AIP Publishing. doi: 10.1063/5.0134156.
Youngblood, N. (2023). Coherent Photonic Crossbar Arrays for Large-Scale Matrix-Matrix Multiplication. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 29(2).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2022.3171167.
Youngblood, N., Rios Ocampo, C.A., Pernice, W.H.P., & Bhaskaran, H. (2023). Integrated optical memristors. NATURE PHOTONICS, 17(7), 561-572.Springer Nature. doi: 10.1038/s41566-023-01217-w.
Zhou, W., Dong, B., Farmakidis, N., Li, X., Youngblood, N., Huang, K., He, Y., David Wright, C., Pernice, W.H.P., & Bhaskaran, H. (2023). In-memory photonic dot-product engine with electrically programmable weight banks. Nat Commun, 14(1), 2887.Springer Nature. doi: 10.1038/s41467-023-38473-x.
Zhou, W., Dong, B., Farmakidis, N., Li, X., Youngblood, N., Huang, K., He, Y., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2023). In-memory photonic dot-product engine with electrically programmable weight banks. In arXiv. doi: 10.48550/arxiv.2304.14302.
Erickson, J.R., Shah, V., Wan, Q., Youngblood, N., & Xiong, F. (2022). Designing fast and efficient electrically driven phase change photonics using foundry compatible waveguide-integrated microheaters. Opt Express, 30(8), 13673-13689.Optica Publishing Group. doi: 10.1364/OE.446984.
Farmakidis, N., Youngblood, N., Lee, J.S., Feldmann, J., Lodi, A., Li, X., Aggarwal, S., Zhou, W., Bogani, L., Pernice, W.H., Wright, C.D., & Bhaskaran, H. (2022). Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials. Adv Sci (Weinh), 9(20), e2200383.Wiley. doi: 10.1002/advs.202200383.
Farmakidis, N., Youngblood, N., Lee, J.S., Feldmann, J., Lodi, A., Li, X., Aggarwal, S., Zhou, W., Bogani, L., Pernice, W.H., Wright, C.D., & Bhaskaran, H. (2022). Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials (Adv. Sci. 20/2022). Advanced Science, 9(20), 2270122.Wiley. doi: 10.1002/advs.202270122.
Lian, C., Vagionas, C., Alexoudi, T., Pleros, N., Youngblood, N., & Ríos, C. (2022). Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics, 11(17), 3823-3854.De Gruyter. doi: 10.1515/nanoph-2022-0089.
Nobile, N.A., Erickson, J.R., Ríos, C., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2022). Time-resolved temperature mapping leveraging the strong thermo-optic effect in phase-change devices. In arXiv. doi: 10.48550/arxiv.2210.08142.
Shah, V., & Youngblood, N. (2022). AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks. In arXiv. doi: 10.48550/arxiv.2210.10048.
Tan, J.Y.S., Cheng, Z., Feldmann, J., Li, X., Youngblood, N., Ali, U.E., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2022). Monadic Pavlovian associative learning in a backpropagation-free photonic network. OPTICA, 9(7), 792-802.Optica Publishing Group. doi: 10.1364/OPTICA.455864.
Youngblood, N., Talagrand, C., Porter, B.F., Galante, C.G., Kneepkens, S., Triggs, G., Sarwat, S.G., Yarmolich, D., Bonilla, R.S., Hosseini, P., Taylor, R.A., & Bhaskaran, H. (2022). Reconfigurable Low-Emissivity Optical Coating Using Ultrathin Phase Change Materials. ACS PHOTONICS, 9(1), 90-100.American Chemical Society (ACS). doi: 10.1021/acsphotonics.1c01128.
Farmakidis, N., Swett, J.L., Youngblood, N., Li, X., Evangeli, C., Aggarwal, S., Mol, J.A., & Bhaskaran, H. (2021). Exploiting rotational asymmetry for sub-50 nm mechanical nanocalligraphy. Microsyst Nanoeng, 7(1), 84.Springer Nature. doi: 10.1038/s41378-021-00300-y.
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., & Bhaskaran, H. (2021). Parallel convolutional processing using an integrated photonic tensor core. Nature, 589(7840), 52-58.Springer Nature. doi: 10.1038/s41586-020-03070-1.
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., & Bhaskaran, H. (2021). Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core. Nature, 591(7849), E13.Springer Nature. doi: 10.1038/s41586-021-03216-9.
Feldmann, J., Youngblood, N., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2021). All-optical spiking neurosynaptic networks with self-learning capabilities. In arXiv. doi: 10.48550/arxiv.2102.09360.
Ma, X., Youngblood, N., Liu, X., Cheng, Y., Cunha, P., Kudtarkar, K., Wang, X., & Lan, S. (2021). Engineering photonic environments for two-dimensional materials. NANOPHOTONICS, 10(3), 1031-1058.De Gruyter. doi: 10.1515/nanoph-2020-0524.
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Gallo, M.L., Fu, X., Lukashchuk, A., Raja, A., Liu, J., Wright, D., Sebastian, A., Kippenberg, T., Pernice, W., & Bhaskaran, H. (2020). Parallel convolution processing using an integrated photonic tensor core. In arXiv. doi: 10.48550/arxiv.2002.00281.
Feldmann, J., Youngblood, N., Li, X., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2020). Integrated 256 Cell Photonic Phase-Change Memory With 512-Bit Capacity. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 26(2).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2019.2956871.
He, Q., Youngblood, N., Cheng, Z., Miao, X., & Bhaskaran, H. (2020). Dynamically tunable transmissive color filters using ultra-thin phase change materials. Opt Express, 28(26), 39841-39849.Optica Publishing Group. doi: 10.1364/OE.411874.
Li, X., Youngblood, N., Cheng, Z., Carrillo, S.G.C., Gemo, E., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2020). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. OPTICA, 7(3), 218-225.Optica Publishing Group. doi: 10.1364/OPTICA.379228.
Li, X., Youngblood, N., Cheng, Z., Carrillo, S.G.C., Gemo, E., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2020). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing (vol 7, pg 218, 2020). OPTICA, 7(12), 1804.Optica Publishing Group. doi: 10.1364/OPTICA.414370.
Ma, X., Youngblood, N., Liu, X., Cheng, Y., Cunha, P., Kudtarkar, K., Wang, X., & Lan, S. (2020). Engineering photonic environments for two-dimensional materials. In arXiv. doi: 10.48550/arxiv.2009.09133.
Shen, Y., Yang, X., Naidoo, D., Fu, X., & Forbes, A. (2020). Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum. Optica, 7(12), 1705.Optica Publishing Group. doi: 10.1364/optica.414397.
Tan, J.Y.S., Cheng, Z., Feldmann, J., Li, X., Youngblood, N., Ali, U.E., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2020). Monadic Pavlovian associative learning in a backpropagation-free photonic network. In arXiv. doi: 10.48550/arxiv.2011.14709.
Carrillo, S.G.C., Gemo, E., Li, X., Youngblood, N., Katumba, A., Bienstman, P., Pernice, W., Bhaskaran, H., & Wright, C.D. (2019). Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications. APL MATERIALS, 7(9).AIP Publishing. doi: 10.1063/1.5111840.
Farmakidis, N., Youngblood, N., Li, X., Tan, J., Swett, J.L., Cheng, Z., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv, 5(11), eaaw2687.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaw2687.
Feldmann, J., Youngblood, N., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2019). All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755), 208-214.Springer Nature. doi: 10.1038/s41586-019-1157-8.
Gemo, E., Carrillo, S.G.C., De Galarreta, C.R., Baldycheva, A., Hayat, H., Youngblood, N., Bhaskaran, H., Pernice, W.H.P., & Wright, C.D. (2019). Plasmonically-enhanced all-optical integrated phase-change memory. Opt Express, 27(17), 24724-24737.Optica Publishing Group. doi: 10.1364/OE.27.024724.
Ghazi Sarwat, S., Cheng, Z., Youngblood, N., Sharizal Alias, M., Sinha, S., Warner, J., & Bhaskaran, H. (2019). Strong Opto-Structural Coupling in Low Dimensional GeSe3 Films. Nano Lett, 19(10), 7377-7384.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.9b03039.
Li, X., Youngblood, N., Rios, C., Cheng, Z., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. OPTICA, 6(1), 1-6.Optica Publishing Group. doi: 10.1364/OPTICA.6.000001.
Li, X., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Non-volatile silicon photonic memory with more than 4-bit per cell capability. doi: 10.48550/arxiv.1904.12740.
Ríos, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C.D., Sebastian, A., & Bhaskaran, H. (2019). In-memory computing on a photonic platform. Sci Adv, 5(2), eaau5759.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aau5759.
Youngblood, N., Rios, C., Gemo, E., Feldmann, J., Cheng, Z., Baldycheva, A., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2019). Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics. ADVANCED FUNCTIONAL MATERIALS, 29(11).Wiley. doi: 10.1002/adfm.201807571.
Youngblood, N., Talagrand, C., Porter, B., Galante, C.G., Kneepkens, S., Sarwat, S.G., Yarmolich, D., Bonilla, R.S., Hosseini, P., Taylor, R., & Bhaskaran, H. (2019). Broadly-tunable smart glazing using an ultra-thin phase-change material. doi: 10.48550/arxiv.1911.02990.
Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials. Adv Mater, 30(32), e1802435.Wiley. doi: 10.1002/adma.201802435.
Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Memory Devices: Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials (Adv. Mater. 32/2018). Advanced Materials, 30(32).Wiley. doi: 10.1002/adma.201870238.
Farmakidis, N., Youngblood, N., Li, X., Tan, J., Swett, J.L., Cheng, Z., Wright, D.C., Pernice, W.H., & Bhaskaran, H. (2018). Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality. In arXiv. doi: 10.48550/arxiv.1811.07651.
Rios, C., Stegmaier, M., Cheng, Z., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. OPTICAL MATERIALS EXPRESS, 8(9), 2455-2470.Optica Publishing Group. doi: 10.1364/OME.8.002455.
Ríos, C., Youngblood, N., Cheng, Z., Gallo, M.L., Pernice, W.H.P., Wright, C.D., Sebastian, A., & Bhaskaran, H. (2018). In-memory computing on a photonic platform. In arXiv. doi: 10.48550/arxiv.1801.06228.
Sarwat, S.G., Youngblood, N., Au, Y.Y., Mol, J.A., Wright, C.D., & Bhaskaran, H. (2018). Engineering Interface-Dependent Photoconductivity in Ge2Sb2Te5 Nanoscale Devices. ACS Appl Mater Interfaces, 10(51), 44906-44914.American Chemical Society (ACS). doi: 10.1021/acsami.8b17602.
Chen, C., Youngblood, N., Peng, R., Yoo, D., Mohr, D.A., Johnson, T.W., Oh, S.H., & Li, M. (2017). Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. Nano Lett, 17(2), 985-991.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.6b04332.
Peng, R., Khaliji, K., Youngblood, N., Grassi, R., Low, T., & Li, M. (2017). Midinfrared Electro-optic Modulation in Few-Layer Black Phosphorus. Nano Lett, 17(10), 6315-6320.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.7b03050.
Peng, R., Khaliji, K., Youngblood, N., Grassi, R., Low, T., & Li, M. (2017). Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus. In arXiv. doi: 10.48550/arxiv.1708.04209.
Xu, M., Gu, Y., Peng, R., Youngblood, N., & Li, M. (2017). Black phosphorus mid-infrared photodetectors. APPLIED PHYSICS B-LASERS AND OPTICS, 123(4).Springer Nature. doi: 10.1007/s00340-017-6698-7.
Youngblood, N., & Li, M. (2017). Ultrafast photocurrent measurements of a black phosphorus photodetector. APPLIED PHYSICS LETTERS, 110(5).AIP Publishing. doi: 10.1063/1.4975360.
Youngblood, N., & Li, M. (2017). Integration of 2D materials on a silicon photonics platform for optoelectronics applications. NANOPHOTONICS, 6(6), 1205-1218.De Gruyter. doi: 10.1515/nanoph-2016-0155.
Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2017). Layer-Tunable Third-Harmonic Generation in Multilayer Black Phosphorus. ACS PHOTONICS, 4(1), 8-14.American Chemical Society (ACS). doi: 10.1021/acsphotonics.6b00639.
Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2016). Layer Tunable Third-Harmonic Generation in Multilayer Black Phosphorus. In arXiv. doi: 10.48550/arxiv.1607.05619.
Lee, S.C., Youngblood, N., Jiang, Y.B., Peterson, E.J., Stark, C.J.M., Detchprohm, T., Wetzel, C., & Brueck, S.R.J. (2015). Incorporation of indium on cubic GaN epitaxially induced on a nanofaceted Si(001) substrate by phase transition. APPLIED PHYSICS LETTERS, 107(23).AIP Publishing. doi: 10.1063/1.4936772.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. NATURE PHOTONICS, 9(4), 247-252.Springer Nature. doi: 10.1038/NPHOTON.2015.23.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett, 14(5), 2741-2746.American Chemical Society (ACS). doi: 10.1021/nl500712u.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. In arXiv. doi: 10.48550/arxiv.1402.7127.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2014). Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. In arXiv. doi: 10.48550/arxiv.1409.6412.
He, Y., (Simon) Cao, P., Hashemkhani, S., Liu, Y., Vaz, D., Joy, K., Youngblood, N., Kubendran, R., Anantram, M.P., & Xiong, F. Artificial synapse with tunable dynamic range for neuromorphic computing with ion intercalated bilayer graphene. npj Unconventional Computing, 2(1), 28.Springer Nature. doi: 10.1038/s44335-025-00042-4.
Kari, S.R., Tamura, M., Guo, Z., Huang, Y.S., Sun, H., Lian, C., Nobile, N., Erickson, J., Moridsadat, M., Ríos Ocampo, C.A., Shastri, B.J., & Youngblood, N. (2025). Integrated PN Microheaters for Fast and Efficient Control of Phase-Change Photonic Memory. In CLEO 2025, (p. aa120_6).Optica Publishing Group. doi: 10.1364/cleo_at.2025.aa120_6.
Liu, L., Kari, S.R., Xin, X., Youngblood, N., Zhang, Y., & Yang, J. (2025). LightML: A Photonic Accelerator for Efficient General Purpose Machine Learning. In Proceedings of the 52nd Annual International Symposium on Computer Architecture, (pp. 18-33).Association for Computing Machinery (ACM). doi: 10.1145/3695053.3731053.
Nobile, N.A., Shah, V., Luberger, D., Feathers, D., Kornish, M., Kornish, B., Flynn, D., & Youngblood, N. (2025). A Flexible Testbed for Prototyping Photonic Processors. In CLEO 2025, (p. aa113_1).Optica Publishing Group. doi: 10.1364/cleo_at.2025.aa113_1.
Pintus, P., Youngblood, N., Pinna, S., Huang, D., Murai, T., Renzani, L., Dumont, M., Shah, V., Gustafsson, M.V., Casula, G.A., Shoji, Y., Soltani, M., Moody, G., & Bowers, J.E. (2025). Magneto-Optics for Cryogenic Communications and Computing Applications. In 2025 30th OptoElectronics and Communications Conference (OECC) and 2025 International Conference on Photonics in Switching and Computing (PSC), 00, (pp. 1-4).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.23919/oecc/psc62146.2025.11111177.
Kari, S.R., Hastings, A., Nobile, N.A., Pantin, D., Shah, V., & Youngblood, N. (2024). Integrated Coherent Photonic Crossbar Arrays for Efficient Optical Computing. In CLEO 2024, (p. sm4m.6).Optica Publishing Group. doi: 10.1364/cleo_si.2024.sm4m.6.
Lian, C., Sun, H., Huang, Y.S., Vitale, S.A., Hu, J., Takeuchi, I., Youngblood, N., Vagionas, C., & Ríos Ocampo, C.A. (2024). Electrically Programmable Non-Volatile Silicon Photonic Content Addressable Memory (CAM) cell. In CLEO 2024, (p. sf2m.2).Optica Publishing Group. doi: 10.1364/cleo_si.2024.sf2m.2.
Nobile, N.A., Lian, C., Sun, H., Huang, Y.S., Mills, B., Popescu, C.C., Callahan, D., Hu, J., Ríos Ocampo, C.A., & Youngblood, N. (2024). Low-loss, nonvolatile tuning of Bragg structures with Sb2Se3. In CLEO 2024, (p. am1j.3).Optica Publishing Group. doi: 10.1364/cleo_at.2024.am1j.3.
Sun, H., Lian, C., Vásquez-Aza, F., Huang, Y.S., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., Pavlidis, G., & Ríos Ocampo, C.A. (2024). Controllable multi-level switching of optical phase change materials via microheater temperature profile engineering. In CLEO 2024, (p. sm2o.4).Optica Publishing Group. doi: 10.1364/cleo_si.2024.sm2o.4.
Vasquez-Aza, F., Sun, H., Lian, C., Huang, Y.S., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., Ocampo, C.A.R., & Pavlidis, G. (2024). Maximizing the Thermal Performance of Microheaters for Non-Volatile Phase Change Photonics: A Comparative Study of Pulse Width Parameter Effects. In 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 00, (pp. 1-6).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/itherm55375.2024.10709548.
Youngblood, N., Pintus, P., Dumont, M., Shah, V., Murai, T., Shoji, Y., Huang, D., & Bowers, J. (2024). Non-Reciprocal Materials for Photonic in-Memory Computing. In Advanced Photonics Congress 2024, (p. itu2b.6).Optica Publishing Group. doi: 10.1364/iprsn.2024.itu2b.6.
Youngblood, N., Pintus, P., Dumont, M., Shah, V., Murai, T., Shoji, Y., Huang, D., & Bowers, J. (2024). Non-reciprocal devices for in-memory photonic computing. In Frontiers in Optics + Laser Science 2024 (FiO, LS), (p. ftu1d.2).Optica Publishing Group. doi: 10.1364/fio.2024.ftu1d.2.
Zheng, M., Chu, C., Lou, Q., Youngblood, N., Li, M., Moazeni, S., & Jiang, L. (2024). OFHE: An Electro-Optical Accelerator for Discretized TFHE. In Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design, (pp. 1-6).Association for Computing Machinery (ACM). doi: 10.1145/3665314.3670839.
Nobile, N.A., Lian, C., Sun, H., Mills, B., Popescu, C.C., Hu, J., Ríos, C., & Youngblood, N. (2023). Nonvolatile band switching using transparent phase-change materials on Bragg structures. In García-Blanco, S.M., & Cheben, P. (Eds.). In Integrated Optics: Devices, Materials, and Technologies XXVII, (p. 62).SPIE, the international society for optics and photonics. doi: 10.1117/12.2647868.
Rahimi Kari, S., Pantin, D., & Youngblood, N. (2023). Scalable and efficient coherent photonic unit cell for time-multiplexed multiplication and correlation detection. In Kitayama, K.I., & Jalali, B. (Eds.). In AI and Optical Data Sciences IV, (p. 5).SPIE, the international society for optics and photonics. doi: 10.1117/12.2649510.
Youngblood, N., Shah, V., & Rahimi Kari, S. (2023). Computational, photonic crossbar arrays for scalable and efficient matrix operations. In Reed, G.T., & Knights, A.P. (Eds.). In Silicon Photonics XVIII, (p. 4).SPIE, the international society for optics and photonics. doi: 10.1117/12.2646996.
Farmakidis, N., Youngblood, N., Lee, J.S., Feldmann, J., Pernice, W.H., Wright, C.D., & Bhaskaran, H. (2022). Plasmonically Enhanced Electronically Addressable Photonic Switches Incorporating Phase-Change Materials. In Conference on Lasers and Electro-Optics, (p. sf2n.3).Optica Publishing Group. doi: 10.1364/cleo_si.2022.sf2n.3.
Farmakidis, N., Youngblood, N., Pernice, W.H.P., Bhaskaran, H., & Aggarwal, S. (2022). Engineering nanostructures at the interface between photonics and electronics. In Adibi, A., Lin, S.Y., & Scherer, A. (Eds.). In Photonic and Phononic Properties of Engineered Nanostructures XII, (p. 26).SPIE, the international society for optics and photonics. doi: 10.1117/12.2619177.
Nobile, N., Erickson, J., Ríos, C., Zhang, Y., Hu, J., Xiong, F., & Youngblood, N. (2022). Dynamic Mapping of Temperature Using Phase-Change Materials. In Conference on Lasers and Electro-Optics, (p. sf2o.3).Optica Publishing Group. doi: 10.1364/cleo_si.2022.sf2o.3.
Shah, V., & Youngblood, N. (2022). AnalogVNN: A Fully Modular Framework for Photonic Analog Neural Networks. In 2022 IEEE Photonics Conference (IPC), 00, (pp. 1-2).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/ipc53466.2022.9975607.
Zhou, W., Li, X., Youngblood, N., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2022). Electrical switching of Ge2Sb2Te5 memory cells based on silicon photonic waveguide microheaters. In Conference on Lasers and Electro-Optics, (p. sf2n.5).Optica Publishing Group. doi: 10.1364/cleo_si.2022.sf2n.5.
Tan, J.Y.S., Cheng, Z., Feldmann, J., Li, X., Youngblood, N., Ali, U.E., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2021). Associative learning on phase change photonics. In Subramania, G.S., & Foteinopoulou, S. (Eds.). In Active Photonic Platforms XIII, (p. 65).SPIE, the international society for optics and photonics. doi: 10.1117/12.2593248.
Gemo, E., Carrillo, S.G.C., Faneca, J., de Galarreta, C.R., Hayat, H., Youngblood, N., Baldycheva, A., Pernice, W.H.P., Bhaskaran, H., & Wright, C.D. (2020). Sub-wavelength plasmonic-enhanced phase-change memory. In Adibi, A., Lin, S.Y., & Scherer, A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 11289, (p. 112891e-112891e-11).SPIE, the international society for optics and photonics. doi: 10.1117/12.2546031.
Li, X., Youngblood, N., Zhou, W., Feldmann, J., Swett, J., Aggarwal, S., Sebastian, A., Wright, C.D., Pernice, W., & Bhaskaran, H. (2020). On-chip Phase Change Optical Matrix Multiplication Core. In 2020 IEEE International Electron Devices Meeting (IEDM), 00, (pp. 7.5.1-7.5.4).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/iedm13553.2020.9372052.
Youngblood, N., Farmakidis, N., Li, X., & Bhaskaran, H. (2020). Nanoscale Optoelectronic Memory with Nonvolatile Phase–Change Photonics. In Conference on Lasers and Electro-Optics, 2020-May, (p. sth3r.1).Optica Publishing Group. doi: 10.1364/cleo_si.2020.sth3r.1.
Zokaee, F., Lou, Q., Youngblood, N., Liu, W., Xie, Y., & Jiang, L. (2020). LightBulb: A Photonic-Nonvolatile-Memory-based Accelerator for Binarized Convolutional Neural Networks. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 00, (pp. 1438-1443).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.23919/date48585.2020.9116494.
David Wright, C., Bhaskaran, H., Wolfram, H.P.P., Carrillo, S.G.C., Gemo, E., Baldycheva, A., Cheng, Z., Li, X., Rios, C., Youngblood, N., Feldmann, J., Gruhler, N., & Stegmaier, M. (2019). Integrated Phase-change Photonics: A strategy for merging communication and computing. In Optics InfoBase Conference Papers, Part F160-OFC 2019.
Rios, C., Youngblood, N., Cheng, Z., Gallo, M.L., Pernice, W.H.P., Wright, C., Sebastian, A., & Bhaskaran, H. (2019). All-Photonic in-Memory Computing Based on Phase-Change Materials. In 2019 Conference on Lasers and Electro-Optics, CLEO 2019 - Proceedings. doi: 10.23919/CLEO.2019.8749826.
Rios, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C., Sebastian, A., & Bhaskaran, H. (2019). All-Photonic in-Memory Computing Based on Phase-Change Materials. In Conference on Lasers and Electro-Optics, Part F129-CLEO_SI 2019, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2019.sm2j.2.
Wright, C.D., Bhaskaran, H., Pernice, W.H.P., Carrillo, S.G.C., Gemo, E., Baldycheva, A., Cheng, Z., Li, X., Rios, C., Youngblood, N., Feldmann, J., Gruhler, N., & Stegmaier, M. (2019). Integrated Phase-change Photonics: A Strategy for Merging Communication and Computing. In Optical Fiber Communication Conference (OFC) 2019, (p. m1d.3).Optica Publishing Group. doi: 10.1364/ofc.2019.m1d.3.
Youngblood, N., Cheng, Z., Farmakidis, N., Li, X., Tan, J., & Bhaskaran, H. (2019). Phase change photonics for brain-inspired computing (Conference Presentation). In Islam, M.S., & George, T. (Eds.). In Micro- and Nanotechnology Sensors, Systems, and Applications XI, (p. 24).SPIE, the international society for optics and photonics. doi: 10.1117/12.2520607.
Peng, R., Khaliji, K., Youngblood, N., Grassi, R., Low, T., & Li, M. (2018). Mid-infrared electro-optic modulation in few-layer black phosphorus (Conference Presentation). In Majumdar, A., Xu, X., & Hendrickson, J.R. (Eds.). In 2D Photonic Materials and Devices, (p. 18).SPIE, the international society for optics and photonics. doi: 10.1117/12.2294528.
Chen, C., Yoo, D., Youngblood, N., Oh, S.H., & Li, M. (2017). Mid-Infrared Plasmonic Coaxial Nanorings for Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy. In Conference on Lasers and Electro-Optics, 2017-January, (p. jth2a.36).Optica Publishing Group. doi: 10.1364/cleo_at.2017.jth2a.36.
Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2017). On-chip phase-change photonic memory and computing. In Subramania, G.S., & Foteinopoulou, S. (Eds.). In Active Photonic Platforms IX, 10345, (p. 1034519).SPIE, the international society for optics and photonics. doi: 10.1117/12.2272127.
Peng, R., Youngblood, N., & Li, M. (2017). Mid-Infrared Electro-Optic Modulation in Black Phosphorus. In Conference on Lasers and Electro-Optics, 2017-January, (p. fw4h.7).Optica Publishing Group. doi: 10.1364/cleo_qels.2017.fw4h.7.
Chen, C., Youngblood, N., Mohr, D., Yoo, D., Johnson, T., Peng, R., Oh, S.H., & Li, M. (2016). Black Phosphorus Photodetector on Silicon Photonic and Plasmonic Hybrid Platform. In Conference on Lasers and Electro-Optics, (p. sm4e.6).Optica Publishing Group. doi: 10.1364/cleo_si.2016.sm4e.6.
Youngblood, N., & Li, M. (2016). Ultrafast Photocurrent Spectroscopy in a Black Phosphorus Van der Waals Heterostructure. In Conference on Lasers and Electro-Optics, (p. stu1r.4).Optica Publishing Group. doi: 10.1364/cleo_si.2016.stu1r.4.
Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2016). Thickness dependent third-harmonic generation in few-layer black phosphorus. In Conference on Lasers and Electro-Optics, (p. jth4c.9).Optica Publishing Group. doi: 10.1364/cleo_at.2016.jth4c.9.
Chen, C., Youngblood, N., & Li, M. (2015). Study of Black Phosphorus Anisotropy on Silicon Photonic Waveguide. In 2015 Optoelectronics Global Conference (OGC), (pp. 1-3).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/ogc.2015.7336864.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). A black phosphorus FET integrated on a silicon waveguide for high speed, low dark current photodetection. In CLEO: 2015, 2015-August, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2015.sm3g.3.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). A black phosphorus FET integrated on a silicon waveguide for high speed, low dark current photodetection. In CLEO: Science and Innovations, CLEO-SI 2015, (p. 2267). doi: 10.1364/CLEO_SI.2015.SM3G.3.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Simultaneous optical modulation and detection using graphene integrated on a silicon waveguide. In Optics InfoBase Conference Papers.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Simultaneous optical modulation and detection using graphene integrated on a silicon waveguide. In CLEO: 2014, 2014-January, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2014.sth1m.3.