Ph.D., Stanford University, 2017 - 2020
M.S., Stanford University, 2015 - 2017
B.S., Colorado State University, 2012 - 2015
Li, Z., & Fang, L. (2024). On the ideal gas law for crowds with high pressure. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 638, 129657.Elsevier. doi: 10.1016/j.physa.2024.129657.
Si, X., & Fang, L. (2024). Interaction between swarming active matter and flow: The impact on Lagrangian coherent structures. PHYSICAL REVIEW FLUIDS, 9(2), 033101.American Physical Society (APS). doi: 10.1103/PhysRevFluids.9.033101.
Si, X., & Fang, L. (2024). Biologically generated turbulent energy flux in shear flow depends on tensor geometry. In Reis, R. (Ed.). PNAS Nexus, 3(2), pgae056.Oxford University Press (OUP). doi: 10.1093/pnasnexus/pgae056.
Si, X., & Fang, L. (2022). Preferential transport of swimmers in heterogeneous two-dimensional turbulent flow. PHYSICAL REVIEW FLUIDS, 7(9), 094501.American Physical Society (APS). doi: 10.1103/PhysRevFluids.7.094501.
Fang, L., & Ouellette, N.T. (2021). Spectral condensation in laboratory two-dimensional turbulence. PHYSICAL REVIEW FLUIDS, 6(10), 104605.American Physical Society (APS). doi: 10.1103/PhysRevFluids.6.104605.
Si, X., & Fang, L. (2021). Preferential alignment and heterogeneous distribution of active non-spherical swimmers near Lagrangian coherent structures. PHYSICS OF FLUIDS, 33(7), 073303.AIP Publishing. doi: 10.1063/5.0055607.
Si, X., & Fang, L. (2021). A novel social distance model reveals the sidewall effect at bottlenecks. Sci Rep, 11(1), 20982.Springer Nature. doi: 10.1038/s41598-021-00486-1.
Si, X., & Fang, L. (2021). Preferential Alignment and Heterogeneous Distribution of Non-spherical Swimmers Near Lagrangian Coherent Structures. doi: 10.1002/essoar.10509041.1.
Fang, L., Balasuriya, S., & Ouellette, N.T. (2020). Disentangling resolution, precision, and inherent stochasticity in nonlinear systems. PHYSICAL REVIEW RESEARCH, 2(2), 023343.American Physical Society (APS). doi: 10.1103/PhysRevResearch.2.023343.
Zhou, Z., Fang, L., Ouellette, N.T., & Xu, H. (2020). Vorticity gradient stretching in the direct enstrophy transfer process of two-dimensional turbulence. PHYSICAL REVIEW FLUIDS, 5(5), 054602.American Physical Society (APS). doi: 10.1103/PhysRevFluids.5.054602.
Fang, L., & Ouellette, N.T. (2019). Transport across a bathymetric interface in quasi-two-dimensional flow. PHYSICAL REVIEW FLUIDS, 4(6), 064501.American Physical Society (APS). doi: 10.1103/PhysRevFluids.4.064501.
Fang, L., Balasuriya, S., & Ouellette, N.T. (2019). Local linearity, coherent structures, and scale-to-scale coupling in turbulent flow. PHYSICAL REVIEW FLUIDS, 4(1), 014501.American Physical Society (APS). doi: 10.1103/PhysRevFluids.4.014501.
Fang, L., & Ouellette, N.T. (2018). Influence of lateral boundaries on transport in quasi-two-dimensional flow. Chaos, 28(2), 023113.AIP Publishing. doi: 10.1063/1.5003893.
Fang, L., & Ouellette, N.T. (2017). Multiple stages of decay in two-dimensional turbulence. PHYSICS OF FLUIDS, 29(11), 111105.AIP Publishing. doi: 10.1063/1.4996776.
Fang, L., & Ouellette, N.T. (2016). Advection and the Efficiency of Spectral Energy Transfer in Two-Dimensional Turbulence. Phys Rev Lett, 117(10), 104501.American Physical Society (APS). doi: 10.1103/PhysRevLett.117.104501.