headshot of Ian Nettleship

Ian Nettleship

Associate Professor
Mechanical Engineering & Materials Science

overview

My research interests include ceramics processing and the structure-properties of ceramic materials. Since joining the University of Pittsburgh I have established a Ceramics Processing Laboratory that has lead an interdisciplinary effort to understand the role of microstructural information in predicting the effect of powder characteristics on the structure-property relationships of ceramics. This work has resulted in a conceptual approach to reliability called Microstructure Mining, which combines materials processing and structural characterization. More recently, I have also established a unique Porous Materials Laboratory focused on the structure-property relationships of porous materials. The emphasis of this work has been on understanding the range of pore structures that can be processed in advanced materials and how they can be tailored for biomedical and environmental applications.

about

(1995 - 1996) 1995 and 1996 Alcoa Foundation Awards..

(1994) 1994 National Science Foundation RIA Award.

Ph.D., Ceramics Science and Engineering, University of Leeds, 1987

B.Sc.(Hons), Materials Science and Engineering, University of Leeds, 1983

Akinbade, Y., Nettleship, I., Papadopoulos, C., & Harries, K.A. (2021). Modelling full-culm bamboo as a naturally varying functionally graded material. WOOD SCIENCE AND TECHNOLOGY, 55(1), 155-179.Springer Nature. doi: 10.1007/s00226-020-01246-6.

Zhang, Q., Wang, W., Schmelzer, E., Gerlach, J., Liu, C., & Nettleship, I. (2021). The degradation behavior of calcium-rich hydroxyapatite foams in vitro. J Biomed Mater Res A, 109(6), 859-868.Wiley. doi: 10.1002/jbm.a.37077.

Zheng, C., Mostafaei, A., de Vecchis, P.R., Nettleship, I., & Chmielus, M. (2021). Microstructure evolution for isothermal sintering of binder jet 3D printed alloy 625 above and below the solidus temperature. ADDITIVE MANUFACTURING, 47, 102276.Elsevier. doi: 10.1016/j.addma.2021.102276.

Papadopoulos, C., & Nettleship, I. (2020). Integrating vernacular experience for teaching nonconventional and vernacular materials. In Nonconventional and Vernacular Construction Materials. (pp. 101-129).Elsevier. doi: 10.1016/b978-0-08-102704-2.00005-6.

Zhang, Q., Nettleship, I., Schmelzer, E., Gerlach, J., Zhang, X., Wang, J., & Liu, C. (2020). Tissue Engineering and Regenerative Medicine Therapies for Cell Senescence in Bone and Cartilage. Tissue Eng Part B Rev, 26(1), 64-78.Mary Ann Liebert. doi: 10.1089/ten.TEB.2019.0215.

Zheng, C., & Nettleship, I. (2020). The potential for materials informatics in the development of non-conventional materials. In Nonconventional and Vernacular Construction Materials. (pp. 131-140).Elsevier. doi: 10.1016/b978-0-08-102704-2.00006-8.

Akinbade, Y., Harries, K.A., Flower, C.V., Nettleship, I., Papadopoulos, C., & Platt, S. (2019). Through-culm wall mechanical behaviour of bamboo. CONSTRUCTION AND BUILDING MATERIALS, 216, 485-495.Elsevier. doi: 10.1016/j.conbuildmat.2019.04.214.

Akinbade, Y., Harries, K.A., Flower, C.V., Nettleship, I., Papadopoulos, C., & Platt, S. (2019). Through-culm wall mechanical behaviour of bamboo (vol 216, pg 485, 2019). CONSTRUCTION AND BUILDING MATERIALS, 224, 995.Elsevier. doi: 10.1016/j.conbuildmat.2019.07.255.

Mostafaei, A., De Vecchis, P.R., Nettleship, I., & Chmielus, M. (2019). Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625. MATERIALS & DESIGN, 162, 375-383.Elsevier. doi: 10.1016/j.matdes.2018.11.051.

Zhang, Q., Gerlach, J.C., Nettleship, I., & Schmelzer, E. (2018). Calcium-Infiltrated Biphasic Hydroxyapatite Scaffolds for Human Hematopoietic Stem Cell Culture. Tissue Eng Part A, 24(21-22), 1563-1573.Mary Ann Liebert. doi: 10.1089/ten.TEA.2018.0025.

Zhang, Q., Gerlach, J.C., Schmelzer, E., & Nettleship, I. (2017). Effect of Calcium-Infiltrated Hydroxyapatite Scaffolds on the Hematopoietic Fate of Human Umbilical Vein Endothelial Cells. J Vasc Res, 54(6), 376-385.Karger Publishers. doi: 10.1159/000481778.

Zhang, Q., Qi, J., Wang, W., & Nettleship, I. (2017). Processing of biphasic calcium phosphate ceramics for culturing of bone marrow stem cells. JOURNAL OF MATERIALS RESEARCH, 32(17), 3260-3270.Springer Nature. doi: 10.1557/jmr.2017.106.

Zhang, Q., Schmelzer, E., Gerlach, J.C., & Nettleship, I. (2017). A microstructural study of the degradation and calcium release from hydroxyapatite-calcium oxide ceramics made by infiltration. Mater Sci Eng C Mater Biol Appl, 73, 684-691.Elsevier. doi: 10.1016/j.msec.2016.11.064.

Finoli, A., Schmelzer, E., Over, P., Nettleship, I., & Gerlach, J.C. (2016). Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells. Biomed Res Int, 2016(1), 6040146.Hindawi. doi: 10.1155/2016/6040146.

Larimer, C., Winder, E., Jeters, R., Prowant, M., Nettleship, I., Addleman, R.S., & Bonheyo, G.T. (2016). A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis. Anal Bioanal Chem, 408(3), 999-1008.Springer Nature. doi: 10.1007/s00216-015-9195-z.

Xiong, Z., Qin, F., Huang, P.S., Nettleship, I., & Lee, J.K. (2016). Effect of Synthesis Techniques on Crystallization and Optical Properties of Ag-Cu Bimetallic Nanoparticles. JOM, 68(4), 1163-1168.Springer Nature. doi: 10.1007/s11837-015-1757-1.

Pekor, C., Gerlach, J.C., Nettleship, I., & Schmelzer, E. (2015). Induction of Hepatic and Endothelial Differentiation by Perfusion in a Three-Dimensional Cell Culture Model of Human Fetal Liver. Tissue Eng Part C Methods, 21(7), 705-715.Mary Ann Liebert. doi: 10.1089/ten.TEC.2014.0453.

Schmelzer, E., Finoli, A., Nettleship, I., & Gerlach, J.C. (2015). Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors. Biotechnol Bioeng, 112(4), 801-810.Wiley. doi: 10.1002/bit.25485.

Larimer, C., Islam, M.S., Ojha, A., & Nettleship, I. (2014). Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a common antibiotic. Biometals, 27(4), 695-702.Springer Nature. doi: 10.1007/s10534-014-9761-4.

Nettleship, I. (2014). Materials for perfusion bioreactors used in tissue engineering. In Tissue Engineering Using Ceramics and Polymers. (pp. 224-251).Elsevier. doi: 10.1533/9780857097163.2.224.

Pekor, C., & Nettleship, I. (2014). The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. CERAMICS INTERNATIONAL, 40(7), 9171-9177.Elsevier. doi: 10.1016/j.ceramint.2014.01.134.

Chen, T.D., Finoli, A., Gerlach, J., & Nettleship, I. (2013). Effective diffusion distance for isothermal sintering of hydroxyapatite. ADVANCES IN APPLIED CERAMICS, 112(6), 353-357.SAGE Publications. doi: 10.1179/1743676113Y.0000000088.

Islam, M.S., Larimer, C., Ojha, A., & Nettleship, I. (2013). Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C Mater Biol Appl, 33(8), 4575-4581.Elsevier. doi: 10.1016/j.msec.2013.07.013.

Islam, M.S., Larimer, C., Ojha, A., & Nettleship, I. (2013). Antimicrobial Efficacy of Silver Nanoparticles as-Deposited on a Porous Membrane Filters. Mat. Sci & Eng. C, 33, 4575-4581.

Nettleship, I. (2013). Improving Ceramic Processing Through the Application of Microstructure Mining. Metallography, Microstructure, and Analysis, 2(6), 372-377.Springer Nature. doi: 10.1007/s13632-013-0098-0.

Finoli, A., Ostrowski, N., Schmelzer, E., Nettleship, I., & Gerlach, J. (2012). Multiscale porous ceramic scaffolds for in vitro culturing of primary human cells. ADVANCES IN APPLIED CERAMICS, 111(5-6), 262-268.SAGE Publications. doi: 10.1179/1743676111Y.0000000072.

Finoli, A., McKeel, D., Gerlach, J., & Nettleship, I. (2010). Phase Transformation Behavior of Hydroxyapatite Foams Subject to Heat Treatment. Biomedical Materials, 5(015004).

Finoli, A., McKeel, D., Gerlach, J., & Nettleship, I. (2010). Phase transformation behaviour of hydroxyapatite foams subject to heat treatment. Biomed Mater, 5(1), 15004.IOP Publishing. doi: 10.1088/1748-6041/5/1/015004.

Guillon, O., & Nettleship, I. (2010). Microstructural Characterization of Alumina Films During Constrained Sintering. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 93(3), 627-629.Wiley. doi: 10.1111/j.1551-2916.2009.03471.x.

Larimer, C., Ostrowski, N., Speakman, J., & Nettleship, I. (2010). The segregation of silver nanoparticles in low-cost ceramic water filters. MATERIALS CHARACTERIZATION, 61(4), 408-412.Elsevier. doi: 10.1016/j.matchar.2010.01.006.

Pekor, C., Groth, B., & Nettleship, I. (2010). The Effect of Polyvinyl Alcohol on the Microstructure and Permeability of Freeze-Cast Alumina. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 93(1), 115-120.Wiley. doi: 10.1111/j.1551-2916.2009.03398.x.

Chen, T., Nettleship, I., McAfee, R.J., Hinklin, T.R., & Ewsuk, K.G. (2009). An Experimental Measurement of Effective Diffusion Distance for the Sintering of Ceramics. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 92(7), 1481-1486.Wiley. doi: 10.1111/j.1551-2916.2009.02954.x.

Chung, S.J., Leonard, J.P., Nettleship, I., Lee, J.K., Soong, Y., Martello, D.V., & Chyu, M.K. (2009). Characterization of ZnO Nanoparticle Suspension in Water: Effective Ultrasonic Dispersion. Powder Technology, 194, 75-80.

Chung, S.J., Leonard, J.P., Nettleship, I., Lee, J.K., Soong, Y., Martello, D.V., & Chyu, M.K. (2009). Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion. POWDER TECHNOLOGY, 194(1-2), 75-80.Elsevier. doi: 10.1016/j.powtec.2009.03.025.

Leonard, J.P., Chung, S.J., Nettleship, I., Soong, Y., Martello, D.V., & Chyu, M.K. (2008). Stability of zinc oxide nanofluids prepared with aggregated nanocrystalline powders. J Nanosci Nanotechnol, 8(12), 6361-6366.American Scientific Publishers. doi: 10.1166/jnn.2008.356.

Pekor, C.M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze-Cast Alumina. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 91(10), 3185-3190.Wiley. doi: 10.1111/j.1551-2916.2008.02616.x.

Dengiz, O., McAfee, R., Nettleship, I., & Smith, A.E. (2007). The application of automated image analysis to dense heterogeneities in partially sintered alumina. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 27(4), 1927-1933.Elsevier. doi: 10.1016/j.jeurceramsoc.2006.06.002.

Nettleship, I., & Chen, T. (2007). Characterization of heterogeneous microstructure evolution in ZrO2-3 mol%Y2O3 during isothermal sintering. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 90(12), 3793-3799.Wiley. doi: 10.1111/j.1551-2916.2007.02052.x.

Dengiz, O., Chen, T., Nettleship, I., & Smith, A.E. (2006). The effect of powder forming method on the pull-out flaw populations observed on polished surfaces of alumina ceramics. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 427(1-2), 160-166.Elsevier. doi: 10.1016/j.msea.2006.04.009.

Dengiz, O., Smith, A.E., & Nettleship, I. (2006). Two-stage data mining for flaw identification in ceramics manufacture. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 44(14), 2839-2851.Taylor & Francis. doi: 10.1080/00207540500534454.

Krishnan, K., Slaughter, W.S., McAfee, R.J., & Nettleship, I. (2006). A representative volume element for the densification of powders. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 89(7), 2311-2313.Wiley. doi: 10.1111/j.1551-2916.2006.00983.x.

McAfee, R.J., & Nettleship, I. (2006). Effect of slip dispersion on microstructure evolution during isothermal sintering of cast alumina. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 89(4), 1273-1279.Wiley. doi: 10.1111/j.1551-2916.2005.00900.x.

Dengiz, O., Smith, A.E., & Nettleship, I. (2005). Grain boundary detection in microstructure images using computational intelligence. COMPUTERS IN INDUSTRY, 56(8-9), 854-866.Elsevier. doi: 10.1016/j.compind.2005.05.012.

McAfee, R.J., & Nettleship, I. (2005). The application of information entropy to the estimation of three-dimensional grain or particle size distributions from materialographic sections. SCRIPTA MATERIALIA, 52(12), 1281-1285.Elsevier. doi: 10.1016/j.scriptamat.2005.02.022.

McAfee, R.J., & Nettleship, I. (2005). A mesoscale description of microstructure evolution for the sintering of ceramics. ACTA MATERIALIA, 53(16), 4305-4311.Elsevier. doi: 10.1016/j.actamat.2005.05.028.

Schmidt, S.A., & Nettleship, I. (2004). The effect of coarse particles on the microstructural evolution of porous alumina sintered at 1375 °C. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 24(9), 2741-2747.Elsevier. doi: 10.1016/j.jeurceramsoc.2003.09.013.

Konak, A., Kulturel-Konak, S., Smith, A.E., & Nettleship, I. (2003). Estimation of shrinkage for near net-shape using a neural network approach. JOURNAL OF INTELLIGENT MANUFACTURING, 14(2), 219-228.Springer Nature. doi: 10.1023/A:1022907615088.

McAfee, R., & Nettleship, I. (2003). The simulation and selection of shapes for the unfolding of grain size distributions. ACTA MATERIALIA, 51(15), 4603-4610.Elsevier. doi: 10.1016/S1359-6454(03)00297-0.

Nettleship, I., & McAfee, R. (2003). Microstructural pathways for the densification of slip cast alumina. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 352(1-2), 287-293.Elsevier. doi: 10.1016/S0921-5093(02)00899-7.

Nettleship, I., Patterson, B.R., & Slaughter, W.S. (2003). Evolution of average microstructural properties in the final stage sintering of alumina. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 86(2), 252-256.Wiley. doi: 10.1111/j.1151-2916.2003.tb00008.x.

Nettleship, I., McAfee, R.J., & Slaughter, W.S. (2002). Evolution of the grain size distribution during the sintering of alumina at 1350°C. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 85(8), 1954-1960.Wiley. doi: 10.1111/j.1151-2916.2002.tb00387.x.

Nettleship, I., & Slaughter, W.S. (1998). Dimensionless parameters for microstructural pathways in sintering. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 81(3), 700-704.Wiley. doi: 10.1111/j.1151-2916.1998.tb02392.x.

Anderson, J.W., Patel, A., Nettleship, I., & Palmiere, E.J. (1997). Platelet orientation in slip cast ceramic matrix composites. ADVANCED COMPOSITES LETTERS, 6(1), 9-11.SAGE Publications. doi: 10.1177/096369359700600102.

Nettleship, I., & Sampathkumar, R. (1997). Coarsening of Mesoporous α-Al2O3 Ceramics. JOURNAL OF POROUS MATERIALS, 4(3), 157-163.Springer Nature. doi: 10.1023/A:1009658716112.

Nettleship, I., Cisko, L., & Vallejo, L.E. (1997). Aggregation of clay in the hydrometer test. CANADIAN GEOTECHNICAL JOURNAL, 34(4), 621-626.Canadian Science Publishing. doi: 10.1139/t97-026.

Nettleship, I., Lehigh, M.D., & Sampathkumar, R. (1997). Microstructural pathways for the sintering of alumina ceramics. SCRIPTA MATERIALIA, 37(4), 419-424.Elsevier. doi: 10.1016/S1359-6462(97)00131-0.

Patel, A., Nettleship, I., & Palmiere, E.J. (1997). The use of image analysis in the characterization of partially oriented ceramic matrix composites. MATERIALS CHARACTERIZATION, 39(1), 15-23.Elsevier. doi: 10.1016/S1044-5803(97)00087-9.

Slaughter, W.S., Nettleship, I., Lehigh, M.D., & Tong, P.P.O. (1997). A quantitative analysis of the effect of geometric assumptions in sintering models. ACTA MATERIALIA, 45(12), 5077-5086.Elsevier. doi: 10.1016/S1359-6454(97)00181-X.

Cherian, I.K., Lehigh, M.D., Nettleship, I., & Kriven, W.M. (1996). Stereological observations of platelet-reinforced mullite- and zirconia-matrix composites. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 79(12), 3273-3281.Wiley. doi: 10.1111/j.1151-2916.1996.tb08105.x.

Nettleship, I. (1996). Applications of porous ceramics. ADVANCED CERAMIC MATERIALS, 122-1(122-124), 305-324.Trans Tech Publications. doi: 10.4028/www.scientific.net/KEM.122-124.305.

Nettleship, I., Shull, J.L., & Kriven, W.M. (1993). Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. Journal of the European Ceramic Society, 11(4), 291-298. doi: 10.1016/0955-2219(93)90028-P.

NETTLESHIP, I., SHULL, J.L., & KRIVEN, W.M. (1993). CHEMICAL PREPARATION AND PHASE-STABILITY OF CA2SIO4 AND SR2SIO4 POWDERS. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 11(4), 291-298.Elsevier. doi: 10.1016/0955-2219(93)90028-P.

NETTLESHIP, I., SLAVICK, K.G., KIM, Y.J., & KRIVEN, W.M. (1993). PHASE-TRANSFORMATIONS IN DICALCIUM SILICATE .3. EFFECTS OF BARIUM ON THE STABILITY OF FINE-GRAINED ALPHA-L' AND BETA PHASES. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 76(10), 2628-2634.Wiley. doi: 10.1111/j.1151-2916.1993.tb03991.x.

KIM, Y.J., NETTLESHIP, I., & KRIVEN, W.M. (1992). PHASE-TRANSFORMATIONS IN DICALCIUM SILICATE .2. TEM STUDIES OF CRYSTALLOGRAPHY, MICROSTRUCTURE, AND MECHANISMS. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 75(9), 2407-2419.Wiley. doi: 10.1111/j.1151-2916.1992.tb05593.x.

NETTLESHIP, I., SLAVICK, K.G., KIM, Y.J., & KRIVEN, W.M. (1992). PHASE-TRANSFORMATIONS IN DICALCIUM SILICATE .1. FABRICATION AND PHASE-STABILITY OF FINE-GRAINED BETA-PHASE. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 75(9), 2400-2406.Wiley. doi: 10.1111/j.1151-2916.1992.tb05592.x.

Nettleship, I., & Stevens, R. (1987). Tetragonal zirconia polycrystal (TZP)—A review. International Journal of High Technology Ceramics, 3(1), 1-32.Elsevier. doi: 10.1016/0267-3762(87)90060-9.

NETTLESHIP, I., & STEVENS, R. (1987). THE EFFECT OF COOLING RATE ON THE PHASE-TRANSFORMATIONS IN MG-PSZ. BRITISH CERAMIC TRANSACTIONS AND JOURNAL, 86(6), 183-186.

McAfee, R.J., & Nettleship, I. (2005). A mesoscale description of microstructural evolution for slip cast alumina sintered at 1350°C. In Ceramic Transactions, 157, (pp. 105-114).

Kisa, P., Fisher, P., Olszewski, A., Nettleship, I., & Eror, N.G. (2003). Synthesis of Porous Ceramics Through Directional Solidification and Freeze-Drying. In MRS Advances, 788, (p. l8.7).Springer Nature. doi: 10.1557/proc-788-l8.7.

Shirey, H.M., Ra, S., Phule, P., & Nettleship, I. (1999). Microwave dielectric properties of barium magnesium tantalate (BMT) for microwave applications. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 217, (p. U468).

Nettleship, I., Schmidt, S.A., Slaughter, W.S., & Lehigh, M.D. (1997). Dimensionless parameters for the analysis of sintering microstructures. 1997 International Conference on Powder Metallurgy and Particulate Materials.Chicago, IL.

Lehigh, M.D., & Nettleship, I. (1995). Microstructural evolution of porous ceramics. In Materials Research Society Symposium - Proceedings, 371, (pp. 315-320).