headshot of Carla Ng

Carla Ng

Associate Professor
Group Website @Ng_lab Civil & Environmental Engr

overview

Dr. Carla Ng (Baumel) works at the intersection of chemistry, biology and engineering to develop models for the fate of chemicals in organisms and ecosystems. Her research interests span multiple scales, from molecules to global systems. Active research areas in her group include:
- Development of integrative modeling strategies to understand the biological fate and effects of per- and polyfluoroalkyl substances (PFAS)
- The role of the global industrial food system on the transport and fate of environmental contaminants and subsequent human exposure.
- Developing quantitative models for structure-based chemicals assessment, including the emergence and importance of chemical transformation products in complex mixtures.
- Harnessing biology to design innovative approaches to treat emerging contaminants.
- Advancing systems-level understanding of the cascading ecological and water quality benefits of green infrastructure
- Understanding the fundamental mechanisms that determine chemical bioaccumulation and bioavailability

about

(2019 - 2024) NSF CAREER Award.

NSF Graduate Research Fellowship.

BS, Chemical Engineering, State University of New York at Buffalo, 2001

MS, Chemical Engineering, State University of New York at Buffalo, 2003

PhD, Chemical and Biological Engineering, Northwestern University, 2008

Antle, J.P., LaRock, M.A., Falls, Z., Ng, C., Atilla-Gokcumen, G.E., Aga, D.S., & Simpson, S.M. (2024). Building Chemical Intuition about Physicochemical Properties of C8-Per-/Polyfluoroalkyl Carboxylic Acids through Computational Means. ACS ES T Eng, 4(1), 196-208.American Chemical Society (ACS). doi: 10.1021/acsestengg.3c00267.

DeWitt, J.C., Glüge, J., Cousins, I.T., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Trier, X., Vierke, L., Wang, Z., Adu-Kumi, S., Balan, S., Buser, A.M., Fletcher, T., Haug, L.S., Heggelund, A., Huang, J., Kaserzon, S., Leonel, J., Sheriff, I., Shi, Y.L., Valsecchi, S., & Scheringer, M. (2024). Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs. Environ Sci Technol Lett, 11(8), 786-797.American Chemical Society (ACS). doi: 10.1021/acs.estlett.4c00147.

Dong, Z., Bain, D.J., Buck, J.K., & Ng, C. (2024). Assessment of the long-term hydrological performance of a green roof system in stormwater control. J Environ Manage, 370, 122831.Elsevier. doi: 10.1016/j.jenvman.2024.122831.

Dong, Z., Bain, D.J., Paudel, S., Buck, J.K., & Ng, C. (2024). Impact of native vegetation and soil moisture dynamics on evapotranspiration in green roof systems. Sci Total Environ, 952, 175747.Elsevier. doi: 10.1016/j.scitotenv.2024.175747.

Heinsberg, L.W., Niu, S., Arslanian, K.J., Chen, R., Bedi, M., Unasa-Apelu, F., Fidow, U.T., Soti-Ulberg, C., Conley, Y.P., Weeks, D.E., Ng, C.A., & Hawley, N.L. (2024). Characterization of per- and polyfluoroalkyl substances (PFAS) concentrations in a community-based sample of infants from Samoa. Chemosphere, 353, 141527.Elsevier. doi: 10.1016/j.chemosphere.2024.141527.

Niu, S., Dong, Z., Li, L., & Ng, C. (2024). Identifying long-term health risks associated with environmental chemical incidents. J Hazard Mater, 478, 135432.Elsevier. doi: 10.1016/j.jhazmat.2024.135432.

Niu, S., Zhu, X., Chen, R., Winchell, A., Gao, P., Barchowsky, A., Buchanich, J.M., & Ng, C. (2024). Personal Wearable Sampler for Per- and Polyfluoroalkyl Substances Exposure Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 11(4), 301-307.American Chemical Society (ACS). doi: 10.1021/acs.estlett.4c00026.

Bedi, M., Sapozhnikova, Y., Taylor, R.B., & Ng, C. (2023). Per- and polyfluoroalkyl substances (PFAS) measured in seafood from a cross-section of retail stores in the United States. J Hazard Mater, 459, 132062.Elsevier. doi: 10.1016/j.jhazmat.2023.132062.

Dong, Z., Bain, D.J., Akcakaya, M., & Ng, C.A. (2023). Evaluating the Thiessen polygon approach for efficient parameterization of urban stormwater models. Environ Sci Pollut Res Int, 30(11), 30295-30307.Springer Nature. doi: 10.1007/s11356-022-24162-7.

Dong, Z., Bain, D.J., Gray, K.A., Akcakaya, M., & Ng, C. (2023). Modeling the hydrological benefits of green roof systems: applications and future needs. ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 9(12), 3120-3136.Royal Society of Chemistry (RSC). doi: 10.1039/d3ew00149k.

Heinsberg, L.W., Niu, S., Arslanian, K.J., Chen, R., Bedi, M., Unasa-Apelu, F., Fidow, U.T., Soti-Ulberg, C., Conley, Y.P., Weeks, D.E., Ng, C.A., & Hawley, N.L. (2023). Characterization of Per- and Polyfluoroalkyl Substance (PFAS) concentrations in a community-based sample of infants from Samoa. medRxiv, 4(11-20), 2023.11.10.23298357.Cold Spring Harbor Laboratory. doi: 10.1101/2023.11.10.23298357.

LaLone, C.A., Blatz, D.J., Jensen, M.A., Vliet, S.M.F., Mayasich, S., Mattingly, K.Z., Transue, T.R., Melendez, W., Wilkinson, A., Simmons, C.W., Ng, C., Zhang, C., & Zhang, Y. (2023). From Protein Sequence to Structure: The Next Frontier in Cross-Species Extrapolation for Chemical Safety Evaluations. Environ Toxicol Chem, 42(2), 463-474.Wiley. doi: 10.1002/etc.5537.

Marciesky, M., Aga, D.S., Bradley, I.M., Aich, N., & Ng, C. (2023). Mechanisms and Opportunities for Rational In Silico Design of Enzymes to Degrade Per- and Polyfluoroalkyl Substances (PFAS). J Chem Inf Model, 63(23), 7299-7319.American Chemical Society (ACS). doi: 10.1021/acs.jcim.3c01303.

Niu, S., Cao, Y., Chen, R., Bedi, M., Sanders, A.P., Ducatman, A., & Ng, C. (2023). A State-of-the-Science Review of Interactions of Per- and Polyfluoroalkyl Substances (PFAS) with Renal Transporters in Health and Disease: Implications for Population Variability in PFAS Toxicokinetics. Environ Health Perspect, 131(7), 76002.Environmental Health Perspectives. doi: 10.1289/EHP11885.

Niu, S., Chen, R., Hageman, K.J., McMullin, R.M., Wing, S.R., & Ng, C.A. (2023). Understanding impacts of organic contaminants from aquaculture on the marine environment using a chemical fate model. J Hazard Mater, 443(Pt A), 130090.Elsevier. doi: 10.1016/j.jhazmat.2022.130090.

Sapozhnikova, Y., Taylor, R.B., Bedi, M., & Ng, C. (2023). Assessing per- and polyfluoroalkyl substances in globally sourced food packaging. Chemosphere, 337, 139381.Elsevier. doi: 10.1016/j.chemosphere.2023.139381.

Smaili, H., & Ng, C. (2023). Adsorption as a remediation technology for short-chain per- and polyfluoroalkyl substances (PFAS) from water - a critical review. ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 9(2), 344-362.Royal Society of Chemistry (RSC). doi: 10.1039/d2ew00721e.

Bangma, J., Guillette, T.C., Bommarito, P.A., Ng, C., Reiner, J.L., Lindstrom, A.B., & Strynar, M.J. (2022). Understanding the dynamics of physiological changes, protein expression, and PFAS in wildlife. Environ Int, 159, 107037.Elsevier. doi: 10.1016/j.envint.2021.107037.

Glüge, J., London, R., Cousins, I.T., DeWitt, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Trier, X., Wang, Z., & Scheringer, M. (2022). Information Requirements under the Essential-Use Concept: PFAS Case Studies. Environ Sci Technol, 56(10), 6232-6242.American Chemical Society (ACS). doi: 10.1021/acs.est.1c03732.

Melymuk, L., Carter, L., Ng, C.A., Liu, Q., Vijver, M.G., Fantke, P., & Baun, A. (2022). Knowns and unknowns of novel entities. ONE EARTH, 5(10), 1067-1069.

Birru, R.L., Liang, H.W., Farooq, F., Bedi, M., Feghali, M., Haggerty, C.L., Mendez, D.D., Catov, J.M., Ng, C.A., & Adibi, J.J. (2021). A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus. Environ Health, 20(1), 63.Springer Nature. doi: 10.1186/s12940-021-00740-z.

Cao, Y., & Ng, C. (2021). Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review. Environ Sci Process Impacts, 23(11), 1623-1640.Royal Society of Chemistry (RSC). doi: 10.1039/d1em00228g.

Cheng, W., & Ng, C.A. (2021). Bayesian Refinement of the Permeability-Limited Physiologically Based Pharmacokinetic Model for Perfluorooctanoic Acid in Male Rats. Chem Res Toxicol, 34(11), 2298-2308.American Chemical Society (ACS). doi: 10.1021/acs.chemrestox.1c00193.

Cheng, W., Doering, J.A., LaLone, C., & Ng, C. (2021). Integrative Computational Approaches to Inform Relative Bioaccumulation Potential of Per- and Polyfluoroalkyl Substances Across Species. Toxicol Sci, 180(2), 212-223.Oxford University Press (OUP). doi: 10.1093/toxsci/kfab004.

Cousins, I.T., De Witt, J.C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Scheringer, M., Trier, X., & Wang, Z. (2021). Finding essentiality feasible: common questions and misinterpretations concerning the "essential-use" concept. Environ Sci Process Impacts, 23(8), 1079-1087.Royal Society of Chemistry (RSC). doi: 10.1039/d1em00180a.

De Silva, A.O., Armitage, J.M., Bruton, T.A., Dassuncao, C., Heiger-Bernays, W., Hu, X.C., Kärrman, A., Kelly, B., Ng, C., Robuck, A., Sun, M., Webster, T.F., & Sunderland, E.M. (2021). PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ Toxicol Chem, 40(3), 631-657.Wiley. doi: 10.1002/etc.4935.

Fenton, S.E., Ducatman, A., Boobis, A., DeWitt, J.C., Lau, C., Ng, C., Smith, J.S., & Roberts, S.M. (2021). Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ Toxicol Chem, 40(3), 606-630.Wiley. doi: 10.1002/etc.4890.

Han, J., Fu, J., Sun, J., Hall, D.R., Yang, D., Blatz, D., Houck, K., Ng, C., Doering, J., LaLone, C., & Peng, H. (2021). Quantitative Chemical Proteomics Reveals Interspecies Variations on Binding Schemes of L-FABP with Perfluorooctanesulfonate. Environ Sci Technol, 55(13), 9012-9023.American Chemical Society (ACS). doi: 10.1021/acs.est.1c00509.

Khazaee, M., Christie, E., Cheng, W., Michalsen, M., Field, J., & Ng, C. (2021). Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. Toxics, 9(3), 45.MDPI. doi: 10.3390/toxics9030045.

Ng, C., Cousins, I.T., DeWitt, J.C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Patton, S., Scheringer, M., Trier, X., & Wang, Z. (2021). Addressing Urgent Questions for PFAS in the 21st Century. Environ Sci Technol, 55(19), 12755-12765.American Chemical Society (ACS). doi: 10.1021/acs.est.1c03386.

Sleight, T.W., Sexton, C.N., Mpourmpakis, G., Gilbertson, L.M., & Ng, C.A. (2021). A Classification Model to Identify Direct-Acting Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products. Chem Res Toxicol, 34(11), 2273-2286.American Chemical Society (ACS). doi: 10.1021/acs.chemrestox.1c00187.

Bedi, M., von Goetz, N., & Ng, C. (2020). Estimating polybrominated diphenyl ether (PBDE) exposure through seafood consumption in Switzerland using international food trade data. Environ Int, 138, 105652.Elsevier. doi: 10.1016/j.envint.2020.105652.

Cousins, I.T., DeWitt, J.C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Scheringer, M., Vierke, L., & Wang, Z. (2020). Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environ Sci Process Impacts, 22(7), 1444-1460.Royal Society of Chemistry (RSC). doi: 10.1039/d0em00147c.

Cousins, I.T., DeWitt, J.C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Scheringer, M., & Wang, Z. (2020). The high persistence of PFAS is sufficient for their management as a chemical class. Environ Sci Process Impacts, 22(12), 2307-2312.Royal Society of Chemistry (RSC). doi: 10.1039/d0em00355g.

Dong, Z., Bain, D., Akcakaya, M., & Ng, C. (2020). Evaluating a Sewershed Urban Storm Water Model for Variability in Parameter Sensitivity and Resolution Effects. doi: 10.31224/osf.io/u5tsz.

Glüge, J., Scheringer, M., Cousins, I., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C., Trier, X., & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). doi: 10.31224/osf.io/2eqac.

Glüge, J., Scheringer, M., Cousins, I.T., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Trier, X., & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts, 22(12), 2345-2373.Royal Society of Chemistry (RSC). doi: 10.1039/d0em00291g.

Khazaee, M., Guardian, M.G.E., Aga, D.S., & Ng, C.A. (2020). Impacts of Sex and Exposure Duration on Gene Expression in Zebrafish Following Perfluorooctane Sulfonate Exposure. Environ Toxicol Chem, 39(2), 437-449.Wiley. doi: 10.1002/etc.4628.

Lohmann, R., Cousins, I.T., DeWitt, J.C., Glüge, J., Goldenman, G., Herzke, D., Lindstrom, A.B., Miller, M.F., Ng, C.A., Patton, S., Scheringer, M., Trier, X., & Wang, Z. (2020). Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?. Environ Sci Technol, 54(20), 12820-12828.American Chemical Society (ACS). doi: 10.1021/acs.est.0c03244.

Sleight, T.W., Khanna, V., Gilbertson, L.M., & Ng, C.A. (2020). Network Analysis for Prioritizing Biodegradation Metabolites of Polycyclic Aromatic Hydrocarbons. Environ Sci Technol, 54(17), 10735-10744.American Chemical Society (ACS). doi: 10.1021/acs.est.0c02217.

Yang, D., Han, J., Hall, D.R., Sun, J., Fu, J., Kutarna, S., Houck, K.A., LaLone, C.A., Doering, J.A., Ng, C.A., & Peng, H. (2020). Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. Environ Sci Technol, 54(9), 5676-5686.American Chemical Society (ACS). doi: 10.1021/acs.est.0c00049.

Cheng, W., & Ng, C.A. (2019). Using Machine Learning to Classify Bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD List. Environ Sci Technol, 53(23), 13970-13980.American Chemical Society (ACS). doi: 10.1021/acs.est.9b04833.

Cousins, I.T., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Scheringer, M., Trier, X., Vierke, L., Wang, Z., & DeWitt, J.C. (2019). The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci Process Impacts, 21(11), 1803-1815.Royal Society of Chemistry (RSC). doi: 10.1039/c9em00163h.

Cousins, I.T., Ng, C.A., Wang, Z., & Scheringer, M. (2019). Correction: Why is high persistence alone a major cause of concern?. Environ Sci Process Impacts, 21(5), 904.Royal Society of Chemistry (RSC). doi: 10.1039/c9em90019e.

Cousins, I.T., Ng, C.A., Wang, Z., & Scheringer, M. (2019). Why is high persistence alone a major cause of concern?. Environ Sci Process Impacts, 21(5), 781-792.Royal Society of Chemistry (RSC). doi: 10.1039/c8em00515j.

Cheng, W., & Ng, C.A. (2018). Predicting Relative Protein Affinity of Novel Per- and Polyfluoroalkyl Substances (PFASs) by An Efficient Molecular Dynamics Approach. Environ Sci Technol, 52(14), 7972-7980.American Chemical Society (ACS). doi: 10.1021/acs.est.8b01268.

Khazaee, M., & Ng, C.A. (2018). Evaluating parameter availability for physiologically based pharmacokinetic (PBPK) modeling of perfluorooctanoic acid (PFOA) in zebrafish. Environ Sci Process Impacts, 20(1), 105-119.Royal Society of Chemistry (RSC). doi: 10.1039/c7em00474e.

Mendez, A., Castillo, L.E., Ruepert, C., Hungerbuehler, K., & Ng, C.A. (2018). Tracking pesticide fate in conventional banana cultivation in Costa Rica: A disconnect between protecting ecosystems and consumer health. Sci Total Environ, 613-614, 1250-1262.Elsevier. doi: 10.1016/j.scitotenv.2017.09.172.

Mittal, V.K., & Ng, C.A. (2018). Formation of PFAAs in fish through biotransformation: A PBPK approach. Chemosphere, 202, 218-227.Elsevier. doi: 10.1016/j.chemosphere.2018.03.064.

Ng, C.A., Ritscher, A., Hungerbuehler, K., & von Goetz, N. (2018). Polybrominated Diphenyl Ether (PBDE) Accumulation in Farmed Salmon Evaluated Using a Dynamic Sea-Cage Production Model. Environ Sci Technol, 52(12), 6965-6973.American Chemical Society (ACS). doi: 10.1021/acs.est.8b00146.

Sun, X., Ng, C.A., & Small, M.J. (2018). Modeling the impact of biota on polychlorinated biphenyls (PCBs) fate and transport in Lake Ontario using a population-based multi-compartment fugacity approach. Environ Pollut, 241, 720-729.Elsevier. doi: 10.1016/j.envpol.2018.05.068.

Sun, X., Ng, C.A., & Small, M.J. (2018). A population-based simultaneous fugacity model design for polychlorinated biphenyls (PCBs) transport in an aquatic system. MethodsX, 5, 1311-1323.Elsevier. doi: 10.1016/j.mex.2018.07.001.

Armitage, J.M., Erickson, R.J., Luckenbach, T., Ng, C.A., Prosser, R.S., Arnot, J.A., Schirmer, K., & Nichols, J.W. (2017). Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. Environ Toxicol Chem, 36(4), 882-897.Wiley. doi: 10.1002/etc.3680.

Cheng, W., & Ng, C.A. (2017). A Permeability-Limited Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctanoic acid (PFOA) in Male Rats. Environ Sci Technol, 51(17), 9930-9939.American Chemical Society (ACS). doi: 10.1021/acs.est.7b02602.

Ng, C.A., & von Goetz, N. (2017). The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure. Environ Health Perspect, 125(1), 1-7.Environmental Health Perspectives. doi: 10.1289/EHP168.

Gilbertson, L.M., & Ng, C.A. (2016). Evaluating the Use of Alternatives Assessment To Compare Bulk Organic Chemical and Nanomaterial Alternatives to Brominated Flame Retardants. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 4(11), 6019-6030.American Chemical Society (ACS). doi: 10.1021/acssuschemeng.6b01318.

Mendez, A., Ng, C.A., Torres, J.P.M., Bastos, W., Bogdal, C., Dos Reis, G.A., & Hungerbuehler, K. (2016). Modeling the dynamics of DDT in a remote tropical floodplain: indications of post-ban use?. Environ Sci Pollut Res Int, 23(11), 10317-10334.Springer Nature. doi: 10.1007/s11356-015-5641-x.

Ng, C.A., & Hungerbuehler, K. (2015). Exploring the Use of Molecular Docking to Identify Bioaccumulative Perfluorinated Alkyl Acids (PFAAs). Environ Sci Technol, 49(20), 12306-12314.American Chemical Society (ACS). doi: 10.1021/acs.est.5b03000.

Gabbert, S., Scheringer, M., Ng, C.A., & Stolzenberg, H.C. (2014). Socio-economic analysis for the authorisation of chemicals under REACH: a case of very high concern?. Regul Toxicol Pharmacol, 70(2), 564-571.Elsevier. doi: 10.1016/j.yrtph.2014.08.013.

Ng, C.A., & Hungerbühler, K. (2014). Bioaccumulation of perfluorinated alkyl acids: observations and models. Environ Sci Technol, 48(9), 4637-4648.American Chemical Society (ACS). doi: 10.1021/es404008g.

Stieger, G., Scheringer, M., Ng, C.A., & Hungerbühler, K. (2014). Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants. Chemosphere, 116, 118-123.Elsevier. doi: 10.1016/j.chemosphere.2014.01.083.

Gouin, T., Armitage, J.M., Cousins, I.T., Muir, D.C.G., Ng, C.A., Reid, L., & Tao, S. (2013). Influence of global climate change on chemical fate and bioaccumulation: the role of multimedia models. Environ Toxicol Chem, 32(1), 20-31.Wiley. doi: 10.1002/etc.2044.

Ng, C.A., & Hungerbühler, K. (2013). Bioconcentration of perfluorinated alkyl acids: how important is specific binding?. Environ Sci Technol, 47(13), 7214-7223.American Chemical Society (ACS). doi: 10.1021/es400981a.

Scheringer, M., Strempel, S., Ng, C.A., & Hungerbühler, K. (2013). Response to comment on Screening for PBT chemicals among the "existing" and "new" chemicals of the EU. Environ Sci Technol, 47(11), 6065-6066.American Chemical Society (ACS). doi: 10.1021/es401769z.

Camenzuli, L., Scheringer, M., Gaus, C., Ng, C.A., & Hungerbühler, K. (2012). Describing the environmental fate of diuron in a tropical river catchment. Sci Total Environ, 440, 178-185.Elsevier. doi: 10.1016/j.scitotenv.2012.07.037.

Scheringer, M., Strempel, S., Hukari, S., Ng, C.A., Blepp, M., & Hungerbuhler, K. (2012). How many persistent organic pollutants should we expect?. ATMOSPHERIC POLLUTION RESEARCH, 3(4), 383-391.Elsevier. doi: 10.5094/APR.2012.044.

Strempel, S., Scheringer, M., Ng, C.A., & Hungerbühler, K. (2012). Screening for PBT chemicals among the "existing" and "new" chemicals of the EU. Environ Sci Technol, 46(11), 5680-5687.American Chemical Society (ACS). doi: 10.1021/es3002713.

Ng, C.A., & Gray, K.A. (2011). Forecasting the effects of global change scenarios on bioaccumulation patterns in great lakes species. GLOBAL CHANGE BIOLOGY, 17(2), 720-733.Wiley. doi: 10.1111/j.1365-2486.2010.02299.x.

Ng, C.A., Scheringer, M., Fenner, K., & Hungerbuhler, K. (2011). A framework for evaluating the contribution of transformation products to chemical persistence in the environment. Environ Sci Technol, 45(1), 111-117.American Chemical Society (ACS). doi: 10.1021/es1010237.

Ng, C.A., & Gray, K.A. (2009). Tracking bioaccumulation in aquatic organisms: A dynamic model integrating life history characteristics and environmental change. ECOLOGICAL MODELLING, 220(9-10), 1266-1273.Elsevier. doi: 10.1016/j.ecolmodel.2009.02.007.

Ng, C.A., Berg, M.B., Jude, D.J., Janssen, J., Charlebois, P.M., Amaral, L.A.N., & Gray, K.A. (2008). Chemical amplification in an invaded food web: seasonality and ontogeny in a high-biomass, low-diversity ecosystem. Environ Toxicol Chem, 27(10), 2186-2195.Wiley. doi: 10.1897/07-636.1.

Stouffer, D.B., Ng, C.A., & Amaral, L.A.N. (2008). Ecological Engineering and Sustainabitity: A New Opportunity for Chemical Engineering. AICHE JOURNAL, 54(12), 3040-3047.Wiley. doi: 10.1002/aic.11720.

Stouffer, D.B., Camacho, J., Guimerà, R., Ng, C.A., & Amaral, L.A.N. (2005). Quantitative patterns in the structure of model and empirical food webs. ECOLOGY, 86(5), 1301-1311.Wiley. doi: 10.1890/04-0957.

Bedi, M., & Ng, C. (2021). PFAS levels in seafood consumed in Pittsburgh: Do shoppers’ behaviors impact overall exposures?. In Fluoros Global 2021.Kingston, Rhode Island.

Cao, Y., & Ng, C. (2021). Using Computational Methods to Explore the Potential Effects of Per- and Polyfluorinated Alkyl Substances (PFAS) on P-glycoprotein at the Blood-Brain Barrier. In Fluoros Global 2021.Kingston, Rhode Island.

Smaili, H., Fernando, P.U.A.I., Michalsen, M., & Ng, C. (2021). Method Development of Surface Plasmon Resonance to Determine PFAS-Protein Binding Kinetics. In Fluoros Global 2021.Kingston, Rhode Island.

Cheng, W., Khazaee, M., & Ng, C. (2019). Beyond legacy PFAS: Models to inform assessment across structural classes and species. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 257.

Khazaee, M., Christie, E., Michalsen, M., Field, J., & Ng, C. (2019). PFAS binding affinity with liver fatty acid binding protein, intestinal fatty acid binding protein, and peroxisome proliferator-activated receptors alpha, delta, and gamma. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 258.

Ng, C.A., & Gray, K.A. (2006). Predicting bioaccumulation in dynamic food webs: Ontogeny, seasonality and invasional successions. In AIChE Annual Meeting, Conference Proceedings.

Amaral, L.A.N., Ng, C., & Gray, K. (2005). Seasonal and ontogenetic diet changes in aquatic food webs result in surprising bioaccumulation patterns. In AIChE Annual Meeting, Conference Proceedings, (p. 10714).

Ishida, C.K., Gray, K., & Ng, C.A. (2004). Cultivating periphyton to accelerate rates of denitrification in wetlands. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 228, (pp. U623-U624).

Ng, C.A., Gray, K.A., Berg, M.B., & Amaral, L.A.N. (2004). Network-centered modeling of bioaccumulation in freshwater food webs. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 228, (p. U624).

Research interests

bioaccumulation
Ecosystem Modeling
exposure modeling
green chemistry
risk assessment
sustainability
toxicokinetics