(2019 - 2024) NSF CAREER Award.
NSF Graduate Research Fellowship.
BS, Chemical Engineering, State University of New York at Buffalo, 2001
MS, Chemical Engineering, State University of New York at Buffalo, 2003
PhD, Chemical and Biological Engineering, Northwestern University, 2008
DeWitt, J.C., Gluge, J., Cousins, I.T., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Trier, X., Vierke, L., Wang, Z., Adu-Kumi, S., Balan, S., Buser, A.M., Fletcher, T., Haug, L.S., Huang, J., Kaserzon, S., Leonel, J., Sheriff, I., Shi, Y.L., Valsecchi, S., & Scheringer, M. (2024). Zurich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 11(8), 786-797.American Chemical Society (ACS). doi: 10.1021/acs.estlett.4c00147.
Dong, Z., Bain, D.J., Buck, J.K., & Ng, C. (2024). Assessment of the long-term hydrological performance of a green roof system in stormwater control. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 370, 122831.Elsevier. doi: 10.1016/j.jenvman.2024.122831.
Dong, Z., Bain, D.J., Paudel, S., Buck, J.K., & Ng, C. (2024). Impact of native vegetation and soil moisture dynamics on evapotranspiration in green roof systems. SCIENCE OF THE TOTAL ENVIRONMENT, 952, 175747.Elsevier. doi: 10.1016/j.scitotenv.2024.175747.
Heinsberg, L.W., Niu, S., Arslanian, K.J., Chen, R., Bedi, M., Unasa-Apelu, F., Fidow, U.T., Soti-Ulberg, C., Conley, Y.P., Weeks, D.E., Ng, C.A., & Hawley, N.L. (2024). Characterization of per- and polyfluoroalkyl substances (PFAS) concentrations in a community-based sample of infants from Samoa. Chemosphere, 353, 141527.Elsevier. doi: 10.1016/j.chemosphere.2024.141527.
Niu, S., Dong, Z., Li, L., & Ng, C. (2024). Identifying long-term health risks associated with environmental chemical incidents. Journal of Hazardous Materials, 478, 135432.Elsevier. doi: 10.1016/j.jhazmat.2024.135432.
Niu, S., Zhu, X., Chen, R., Winchell, A., Gao, P., Barchowsky, A., Buchanich, J.M., & Ng, C. (2024). Personal Wearable Sampler for Per- and Polyfluoroalkyl Substances Exposure Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 11(4), 301-307.American Chemical Society (ACS). doi: 10.1021/acs.estlett.4c00026.
Antle, J.P., Larock, M.A., Falls, Z., Ng, C., Atilla-Gokcumen, G.E., Aga, D.S., & Simpson, S.M. (2023). Building Chemical Intuition about Physicochemical Properties of C8-Per-/Polyfluoroalkyl Carboxylic Acids through Computational Means. ACS ES&T ENGINEERING, 4(1), 196-208.American Chemical Society (ACS). doi: 10.1021/acsestengg.3c00267.
Bedi, M., Sapozhnikova, Y., Taylor, R.B., & Ng, C. (2023). Per- and polyfluoroalkyl substances (PFAS) measured in seafood from a cross-section of retail stores in the United States. Journal of Hazardous Materials, 459, 132062.Elsevier. doi: 10.1016/j.jhazmat.2023.132062.
Dong, Z., Bain, D.J., Akcakaya, M., & Ng, C.A. (2023). Evaluating the Thiessen polygon approach for efficient parameterization of urban stormwater models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 30(11), 30295-30307.Springer Nature. doi: 10.1007/s11356-022-24162-7.
Dong, Z., Bain, D.J., Gray, K.A., Akcakaya, M., & Ng, C. (2023). Modeling the hydrological benefits of green roof systems: applications and future needs. ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 9(12), 3120-3136.Royal Society of Chemistry (RSC). doi: 10.1039/d3ew00149k.
Heinsberg, L.W., Niu, S., Arslanian, K.J., Chen, R., Bedi, M., Unasa-Apelu, F., Fidow, U.T., Soti-Ulberg, C., Conley, Y.P., Weeks, D.E., Ng, C.A., & Hawley, N.L. (2023). Characterization of Per- and Polyfluoroalkyl Substance (PFAS) concentrations in a community-based sample of infants from Samoa. medRxiv, 4(11-20), 2023.11.10.23298357.Cold Spring Harbor Laboratory. doi: 10.1101/2023.11.10.23298357.
LaLone, C.A., Blatz, D.J., Jensen, M.A., Vliet, S.M.F., Mayasich, S., Mattingly, K.Z., Transue, T.R., Melendez, W., Wilkinson, A., Simmons, C.W., Ng, C., Zhang, C., & Zhang, Y. (2023). From Protein Sequence to Structure: The Next Frontier in Cross-Species Extrapolation for Chemical Safety Evaluations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 42(2), 463-474.Wiley. doi: 10.1002/etc.5537.
Marciesky, M., Aga, D.S., Bradley, I.M., Aich, N., & Ng, C. (2023). Mechanisms and Opportunities for Rational In Silico Design of Enzymes to Degrade Per- and Polyfluoroalkyl Substances (PFAS). JOURNAL OF CHEMICAL INFORMATION AND MODELING, 63(23), 7299-7319.American Chemical Society (ACS). doi: 10.1021/acs.jcim.3c01303.
Niu, S., Cao, Y., Chen, R., Bedi, M., Sanders, A.P., Ducatman, A., & Ng, C. (2023). A State-of-the-Science Review of Interactions of Per- and Polyfluoroalkyl Substances (PFAS) with Renal Transporters in Health and Disease: Implications for Population Variability in PFAS Toxicokinetics. ENVIRONMENTAL HEALTH PERSPECTIVES, 131(7), 076002.Environmental Health Perspectives. doi: 10.1289/EHP11885.
Niu, S., Chen, R., Hageman, K.J., McMullin, R.M., Wing, S.R., & Ng, C.A. (2023). Understanding impacts of organic contaminants from aquaculture on the marine environment using a chemical fate model. JOURNAL OF HAZARDOUS MATERIALS, 443(Pt A), 130090.Elsevier. doi: 10.1016/j.jhazmat.2022.130090.
Sapozhnikova, Y., Taylor, R.B., Bedi, M., & Ng, C. (2023). Assessing per- and polyfluoroalkyl substances in globally sourced food packaging. Chemosphere, 337, 139381.Elsevier. doi: 10.1016/j.chemosphere.2023.139381.
Smaili, H., & Ng, C. (2023). Adsorption as a remediation technology for short-chain per- and polyfluoroalkyl substances (PFAS) from water - a critical review. ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 9(2), 344-362.Royal Society of Chemistry (RSC). doi: 10.1039/d2ew00721e.
Bangma, J., Guillette, T.C., Bommarito, P.A., Ng, C., Reiner, J.L., Lindstrom, A.B., & Strynar, M.J. (2022). Understanding the dynamics of physiological changes, protein expression, and PFAS in wildlife. ENVIRONMENT INTERNATIONAL, 159, 107037.Elsevier. doi: 10.1016/j.envint.2021.107037.
Gluge, J., London, R., Cousins, I.T., DeWitt, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Trier, X., Wang, Z., & Scheringer, M. (2022). Information Requirements under the Essential-Use Concept: PFA Case Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 56(10), 6232-6242.American Chemical Society (ACS). doi: 10.1021/acs.est.1c03732.
Melymuk, L., Carter, L., Ng, C.A., Liu, Q., Vijver, M.G., Fantke, P., & Baun, A. (2022). Knowns and unknowns of novel entities. ONE EARTH, 5(10), 1067-1069.
Birru, R.L., Liang, H.W., Farooq, F., Bedi, M., Feghali, M., Haggerty, C.L., Mendez, D.D., Catov, J.M., Ng, C.A., & Adibi, J.J. (2021). A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus. ENVIRONMENTAL HEALTH, 20(1), 63.Springer Nature. doi: 10.1186/s12940-021-00740-z.
Cao, Y., & Ng, C. (2021). Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 23(11), 1623-1640.Royal Society of Chemistry (RSC). doi: 10.1039/d1em00228g.
Cheng, W., & Ng, C.A. (2021). Bayesian Refinement of the Permeability-Limited Physiologically Based Pharmacokinetic Model for Perfluorooctanoic Acid in Male Rats. CHEMICAL RESEARCH IN TOXICOLOGY, 34(11), 2298-2308.American Chemical Society (ACS). doi: 10.1021/acs.chemrestox.1c00193.
Cheng, W., Doering, J.A., LaLone, C., & Ng, C. (2021). Integrative Computational Approaches to Inform Relative Bioaccumulation Potential of Per- and Polyfluoroalkyl Substances Across Species. TOXICOLOGICAL SCIENCES, 180(2), 212-223.Oxford University Press (OUP). doi: 10.1093/toxsci/kfab004.
Cousins, I.T., De Witt, J.C., Gluge, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Scheringer, M., Trier, X., & Wang, Z. (2021). Finding essentiality feasible: common questions and misinterpretations concerning the "essential-use" concept. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 23(8), 1079-1087.Royal Society of Chemistry (RSC). doi: 10.1039/d1em00180a.
De Silva, A.O., Armitage, J.M., Bruton, T.A., Dassuncao, C., Heiger-Bernays, W., Hu, X.C., Karrman, A., Kelly, B., Ng, C., Robuck, A., Sun, M., Webster, T.F., & Sunderland, E.M. (2021). PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 40(3), 631-657.Wiley. doi: 10.1002/etc.4935.
Fenton, S.E., Ducatman, A., Boobis, A., DeWitt, J.C., Lau, C., Ng, C., Smith, J.S., & Roberts, S.M. (2021). Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 40(3), 606-630.Wiley. doi: 10.1002/etc.4890.
Han, J., Fu, J., Sun, J., Hall, D.R., Yang, D., Blatz, D., Houck, K., Ng, C., Doering, J., LaLone, C., & Peng, H. (2021). Quantitative Chemical Proteomics Reveals Interspecies Variations on Binding Schemes of L-FABP with Perfluorooctanesulfonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 55(13), 9012-9023.American Chemical Society (ACS). doi: 10.1021/acs.est.1c00509.
Khazaee, M., Christie, E., Cheng, W., Michalsen, M., Field, J., & Ng, C. (2021). Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. TOXICS, 9(3), 45.MDPI. doi: 10.3390/toxics9030045.
Ng, C., Cousins, I.T., DeWitt, J.C., Gluge, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Patton, S., Scheringer, M., Trier, X., & Wang, Z. (2021). Addressing Urgent Questions for PFAS in the 21st Century. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 55(19), 12755-12765.American Chemical Society (ACS). doi: 10.1021/acs.est.1c03386.
Sleight, T.W., Sexton, C.N., Mpourmpakis, G., Gilbertson, L.M., & Ng, C.A. (2021). A Classification Model to Identify Direct-Acting Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products. CHEMICAL RESEARCH IN TOXICOLOGY, 34(11), 2273-2286.American Chemical Society (ACS). doi: 10.1021/acs.chemrestox.1c00187.
Bedi, M., von Goetz, N., & Ng, C. (2020). Estimating polybrominated diphenyl ether (PBDE) exposure through seafood consumption in Switzerland using international food trade data. ENVIRONMENT INTERNATIONAL, 138, 105652.Elsevier. doi: 10.1016/j.envint.2020.105652.
Cousins, I.T., DeWitt, J.C., Gluege, J., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Scheringer, M., & Wang, Z. (2020). The high persistence of PFAS is sufficient for their management as a chemical class. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 22(12), 2307-2312.Royal Society of Chemistry (RSC). doi: 10.1039/d0em00355g.
Cousins, I.T., DeWitt, J.C., Gluge, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Scheringer, M., Vierke, L., & Wang, Z. (2020). Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 22(7), 1444-1460.Royal Society of Chemistry (RSC). doi: 10.1039/d0em00147c.
Dong, Z., Bain, D., Akcakaya, M., & Ng, C. (2020). Evaluating a Sewershed Urban Storm Water Model for Variability in Parameter Sensitivity and Resolution Effects. doi: 10.31224/osf.io/u5tsz.
Gluege, J., Scheringer, M., Cousins, I.T., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Trier, X., & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 22(12), 2345-2373.Royal Society of Chemistry (RSC). doi: 10.1039/d0em00291g.
Glüge, J., Scheringer, M., Cousins, I., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C., Trier, X., & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). doi: 10.31224/osf.io/2eqac.
Khazaee, M., Guardian, M.G.E., Aga, D.S., & Ng, C.A. (2020). Impacts of Sex and Exposure Duration on Gene Expression in Zebrafish Following Perfluorooctane Sulfonate Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 39(2), 437-449.Wiley. doi: 10.1002/etc.4628.
Lohmann, R., Cousins, I.T., DeWitt, J.C., Gluege, J., Goldenman, G., Herzke, D., Lindstrom, A.B., Miller, M.F., Ng, C.A., Patton, S., Scheringer, M., Trier, X., & Wang, Z. (2020). Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 54(20), 12820-12828.American Chemical Society (ACS). doi: 10.1021/acs.est.0c03244.
Sleight, T.W., Khanna, V., Gilbertson, L.M., & Ng, C.A. (2020). Network Analysis for Prioritizing Biodegradation Metabolites of Polycyclic Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 54(17), 10725-10734.American Chemical Society (ACS). doi: 10.1021/acs.est.0c02217.
Yang, D., Han, J., Hall, D.R., Sun, J., Fu, J., Kutarna, S., Houck, K.A., LaLone, C.A., Doering, J.A., Ng, C.A., & Peng, H. (2020). Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 54(9), 5676-5686.American Chemical Society (ACS). doi: 10.1021/acs.est.0c00049.
Cheng, W., & Ng, C.A. (2019). Using Machine Learning to Classify Bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD List. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 53(23), 13970-13980.American Chemical Society (ACS). doi: 10.1021/acs.est.9b04833.
Cousins, I.T., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Scheringer, M., Trier, X., Vierke, L., Wang, Z., & DeWitt, J.C. (2019). The concept of essential use for determining when uses of PFASs can be phased out. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 21(11), 1803-1815.Royal Society of Chemistry (RSC). doi: 10.1039/c9em00163h.
Cousins, I.T., Ng, C.A., Wang, Z., & Scheringer, M. (2019). Why is high persistence alone a major cause of concern? (vol 21, pg 781, 2019). ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 21(5), 904.Royal Society of Chemistry (RSC). doi: 10.1039/c9em90019e.
Cousins, I.T., Ng, C.A., Wang, Z., & Scheringer, M. (2019). Why is high persistence alone a major cause of concern?. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 21(5), 781-792.Royal Society of Chemistry (RSC). doi: 10.1039/c8em00515j.
Cheng, W., & Ng, C.A. (2018). Predicting Relative Protein Affinity of Novel Per- and Polyfluoroalkyl Substances (PFASs) by An Efficient Molecular Dynamics Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 52(14), 7972-7980.American Chemical Society (ACS). doi: 10.1021/acs.est.8b01268.
Khazaee, M., & Ng, C.A. (2018). Evaluating parameter availability for physiologically based pharmacokinetic (PBPK) modeling of perfluorooctanoic acid (PFOA) in zebrafish. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 20(1), 105-119.Royal Society of Chemistry (RSC). doi: 10.1039/c7em00474e.
Mendez, A., Castillo, L.E., Ruepert, C., Hungerbuehler, K., & Ng, C.A. (2018). Tracking pesticide fate in conventional banana cultivation in Costa Rica: A disconnect between protecting ecosystems and consumer health. SCIENCE OF THE TOTAL ENVIRONMENT, 613, 1250-1262.Elsevier. doi: 10.1016/j.scitotenv.2017.09.172.
Mittal, V.K., & Ng, C.A. (2018). Formation of PFAAs in fish through biotransformation: A PBPK approach. CHEMOSPHERE, 202, 218-227.Elsevier. doi: 10.1016/j.chemosphere.2018.03.064.
Ng, C.A., Ritscher, A., Hungerbuehler, K., & von Goetz, N. (2018). Polybrominated Diphenyl Ether (PBDE) Accumulation in Farmed Salmon Evaluated Using a Dynamic Sea-Cage Production Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 52(12), 6965-6973.American Chemical Society (ACS). doi: 10.1021/acs.est.8b00146.
Sun, X., Ng, C.A., & Small, M.J. (2018). Modeling the impact of biota on polychlorinated biphenyls (PCBs) fate and transport in Lake Ontario using a population-based multi compartment fugacity approach. ENVIRONMENTAL POLLUTION, 241, 720-729.Elsevier. doi: 10.1016/j.envpol.2018.05.068.
Sun, X., Ng, C.A., & Small, M.J. (2018). A population-based simultaneous fugacity model design for polychlorinated biphenyls (PCBs) transport in an aquatic system. MethodsX, 5, 1311-1323.Elsevier. doi: 10.1016/j.mex.2018.07.001.
Armitage, J.M., Erickson, R.J., Luckenbach, T., Ng, C.A., Prosser, R.S., Arnot, J.A., Schirmer, K., & Nichols, J.W. (2017). ASSESSING THE BIOACCUMULATION POTENTIAL OF IONIZABLE ORGANIC COMPOUNDS: CURRENT KNOWLEDGE AND RESEARCH PRIORITIES. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 36(4), 882-897.Wiley. doi: 10.1002/etc.3680.
Cheng, W., & Ng, C.A. (2017). A Permeability-Limited Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctanoic acid (PFOA) in Male Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 51(17), 9930-9939.American Chemical Society (ACS). doi: 10.1021/acs.est.7b02602.
Ng, C.A., & von Goetz, N. (2017). The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES, 125(1), 1-7.Environmental Health Perspectives. doi: 10.1289/EHP168.
Gilbertson, L.M., & Ng, C.A. (2016). Evaluating the Use of Alternatives Assessment To Compare Bulk Organic Chemical and Nanomaterial Alternatives to Brominated Flame Retardants. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 4(11), 6019-6030.American Chemical Society (ACS). doi: 10.1021/acssuschemeng.6b01318.
Mendez, A., Ng, C.A., Machado Torres, J.P., Bastos, W., Bogdal, C., dos Reis, G.A., & Hungerbuehler, K. (2016). Modeling the dynamics of DDT in a remote tropical floodplain: indications of post-ban use?. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 23(11), 10317-10334.Springer Nature. doi: 10.1007/s11356-015-5641-x.
Ng, C.A., & Hungerbuehler, K. (2015). Exploring the Use of Molecular Docking to Identify Bioaccumulative Perfluorinated Alkyl Acids (PFAAs). ENVIRONMENTAL SCIENCE & TECHNOLOGY, 49(20), 12306-12314.American Chemical Society (ACS). doi: 10.1021/acs.est.5b03000.
Gabbert, S., Scheringer, M., Ng, C.A., & Stolzenberg, H.C. (2014). Socio-economic analysis for the authorisation of chemicals under REACH: A case of very high concern?. REGULATORY TOXICOLOGY AND PHARMACOLOGY, 70(2), 564-571.Elsevier. doi: 10.1016/j.yrtph.2014.08.013.
Ng, C.A., & Hungerbuehler, K. (2014). Bioaccumulation of Perfluorinated Alkyl Acids: Observations and Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 48(9), 4637-4648.American Chemical Society (ACS). doi: 10.1021/es404008g.
Stieger, G., Scheringer, M., Ng, C.A., & Hungerbuehler, K. (2014). Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: Data availability and quality for 36 alternative brominated flame retardants. CHEMOSPHERE, 116, 118-123.Elsevier. doi: 10.1016/j.chemosphere.2014.01.083.
Gouin, T., Armitage, J.M., Cousins, I.T., Muir, D.C.G., Ng, C.A., Reid, L., & Tao, S. (2013). Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 32(1), 20-31.Wiley. doi: 10.1002/etc.2044.
Ng, C.A., & Hungerbuehler, K. (2013). Bioconcentration of Perfluorinated Alkyl Acids: How Important Is Specific Binding?. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 47(13), 7214-7223.American Chemical Society (ACS). doi: 10.1021/es400981a.
Scheringer, M., Strempel, S., Ng, C.A., & Hungerbuehler, K. (2013). Response to Comment on Screening for PBT Chemicals among the "Existing" and "New" Chemicals of the EU. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 47(11), 6065-6066.American Chemical Society (ACS). doi: 10.1021/es401769z.
Camenzuli, L., Scheringer, M., Gaus, C., Ng, C.A., & Hungerbuehler, K. (2012). Describing the environmental fate of diuron in a tropical river catchment. SCIENCE OF THE TOTAL ENVIRONMENT, 440, 178-185.Elsevier. doi: 10.1016/j.scitotenv.2012.07.037.
Scheringer, M., Strempel, S., Hukari, S., Ng, C.A., Blepp, M., & Hungerbuhler, K. (2012). How many persistent organic pollutants should we expect?. ATMOSPHERIC POLLUTION RESEARCH, 3(4), 383-391.Elsevier. doi: 10.5094/APR.2012.044.
Strempel, S., Scheringer, M., Ng, C.A., & Hungerbuehler, K. (2012). Screening for PBT Chemicals among the "Existing" and "New" Chemicals of the EU. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 46(11), 5680-5687.American Chemical Society (ACS). doi: 10.1021/es3002713.
Ng, C.A., & Gray, K.A. (2011). Forecasting the effects of global change scenarios on bioaccumulation patterns in great lakes species. GLOBAL CHANGE BIOLOGY, 17(2), 720-733.Wiley. doi: 10.1111/j.1365-2486.2010.02299.x.
Ng, C.A., Scheringer, M., Fenner, K., & Hungerbuhler, K. (2011). A Framework for Evaluating the Contribution of Transformation Products to Chemical Persistence in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 45(1), 111-117.American Chemical Society (ACS). doi: 10.1021/es1010237.
Ng, C.A., & Gray, K.A. (2009). Tracking bioaccumulation in aquatic organisms: A dynamic model integrating life history characteristics and environmental change. ECOLOGICAL MODELLING, 220(9-10), 1266-1273.Elsevier. doi: 10.1016/j.ecolmodel.2009.02.007.
Ng, C.A., Berg, M.B., Jude, D.J., Janssen, J., Charlebois, P.M., Amaral, L.A.N., & Gray, K.A. (2008). Chemical amplification in an invaded food web: Seasonality and ontogeny in a high-biomass, low-diversity ecosystem. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 27(10), 2186-2195.Wiley. doi: 10.1897/07-636.1.
Stouffer, D.B., Ng, C.A., & Amaral, L.A.N. (2008). Ecological Engineering and Sustainabitity: A New Opportunity for Chemical Engineering. AICHE JOURNAL, 54(12), 3040-3047.Wiley. doi: 10.1002/aic.11720.
Stouffer, D.B., Camacho, J., Guimerà, R., Ng, C.A., & Amaral, L.A.N. (2005). Quantitative patterns in the structure of model and empirical food webs. ECOLOGY, 86(5), 1301-1311.Wiley. doi: 10.1890/04-0957.
Bedi, M., & Ng, C. (2021). PFAS levels in seafood consumed in Pittsburgh: Do shoppers’ behaviors impact overall exposures?. In Fluoros Global 2021.Kingston, Rhode Island.
Cao, Y., & Ng, C. (2021). Using Computational Methods to Explore the Potential Effects of Per- and Polyfluorinated Alkyl Substances (PFAS) on P-glycoprotein at the Blood-Brain Barrier. In Fluoros Global 2021.Kingston, Rhode Island.
Smaili, H., Fernando, P.U.A.I., Michalsen, M., & Ng, C. (2021). Method Development of Surface Plasmon Resonance to Determine PFAS-Protein Binding Kinetics. In Fluoros Global 2021.Kingston, Rhode Island.
Cheng, W., Khazaee, M., & Ng, C. (2019). Beyond legacy PFAS: Models to inform assessment across structural classes and species. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 257.
Khazaee, M., Christie, E., Michalsen, M., Field, J., & Ng, C. (2019). PFAS binding affinity with liver fatty acid binding protein, intestinal fatty acid binding protein, and peroxisome proliferator-activated receptors alpha, delta, and gamma. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 258.
Ng, C.A., & Gray, K.A. (2006). Predicting bioaccumulation in dynamic food webs: Ontogeny, seasonality and invasional successions. In AIChE Annual Meeting, Conference Proceedings.
Amaral, L.A.N., Ng, C., & Gray, K. (2005). Seasonal and ontogenetic diet changes in aquatic food webs result in surprising bioaccumulation patterns. In AIChE Annual Meeting, Conference Proceedings, (p. 10714).
Ishida, C.K., Gray, K., & Ng, C.A. (2004). Cultivating periphyton to accelerate rates of denitrification in wetlands. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 228, (pp. U623-U624).
Ng, C.A., Gray, K.A., Berg, M.B., & Amaral, L.A.N. (2004). Network-centered modeling of bioaccumulation in freshwater food webs. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 228, (p. U624).