headshot of Inanc Senocak

Inanc Senocak

Professor
Senocak Research Group Mechanical Engineering & Materials Science

overview

Inanc Senocak (E-nahnch Sheh-no-chak) is a professor of mechanical engineering at the University of Pittsburgh. He obtained his PhD degree in aerospace engineering from the University of Florida and his B.Sc. degree in mechanical engineering from the Middle East Technical University in Ankara, Turkey. He worked as a postdoctoral researcher at the Center for Turbulence Research, jointly operated by Stanford University and NASA Ames Research Center, and at the Los Alamos National Laboratory prior to starting his faculty career at Boise State University in 2007. He is a fellow of the American Society of Mechanical Engineers (ASME), an associate fellow of the American Institute of Aeronautics and Astronautics (AIAA), and a past recipient of a CAREER Award from the National Science Foundation.

about

(2020 - 2024) William Kepler Whiteford Faculty Fellow.

(2018) Fellow, American Society of Mechanical Engineers.

(2018) Associate Fellow, American Institute of Aeronautics and Astronautics.

(2011) NSF CAREER Award.

(2003) Postdoctoral Fellow, Center for Turbulence Research, Stanford University/ NASA Ames Research Center.

PhD, Aerospace Engineering, University of Florida, 1998 - 2002

BS, Mechanical Engineering, Middle East Technical University, 1994 - 1998

Stofanak, P.J., Xiao, C.N., & Senocak, I. (2024). Unusual bifurcation scenario in a stably stratified, valley-shaped enclosure heated from below. Phys. Rev. Fluids, 9(7), 074401.American Physical Society. doi: 10.1103/PhysRevFluids.9.074401.

Henao-Garcia, S., Xiao, C.N., & Senocak, I. (2023). Investigation of oscillations in katabatic Prandtl slope flows. Quarterly Journal of the Royal Meteorological Society, 149(750), 247-261. doi: 10.1002/qj.4405.

Ma, T.H., & Senocak, I. (2023). Lateral Boundary Conditions for Complex Terrain Wind Simulations with Oblique Inflow Direction. Boundary-Layer Meteorology, 187(3), 567-590.Springer Nature. doi: 10.1007/s10546-023-00786-1.

Senocak, I., & DeLeon, R. (2023). Turbulent Inflow Generation for Large-Eddy Simulation of Winds around Complex Terrain. Atmosphere, 14(3), 447.MDPI AG. doi: 10.3390/atmos14030447.

Basir, S., & Senocak, I. (2022). Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion. Journal of Computational Physics, 463, 111301-111316.Elsevier. doi: 10.1016/j.jcp.2022.111301.

Xiao, C.N., & Senocak, I. (2022). Speaker-wire vortices in stratified anabatic Prandtl slope flows and their secondary instabilities. Journal of Fluid Mechanics, 944, A27.Cambridge University Press. doi: 10.1017/jfm.2022.508.

Xiao, C.N., & Senocak, I. (2022). Impact of stratification mechanisms on turbulent characteristics of stable open-channel flows. Journal of the Atmospheric Sciences, 79(1), 205-225.American Meteorological Society. doi: 10.1175/JAS-D-21-0063.1.

Hasbestan, J.J., Xiao, C.N., & Senocak, I. (2020). PittPack: An open-source Poisson's equation solver for extreme-scale computing with accelerators. COMPUTER PHYSICS COMMUNICATIONS, 254, 107272.Elsevier. doi: 10.1016/j.cpc.2020.107272.

Santos, F.P., Lage, P.L.C., Favero, J.L., & Senocak, I. (2020). GPU-accelerated simulation of polydisperse multiphase flows using dual-quadrature-based moment methods. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 98(5), 1211-1224.Wiley. doi: 10.1002/cjce.23697.

Senocak, I., & Xiao, C.N. (2020). Linear Instability of Stably Stratified Down-Slope Flows. In Modeling and Simulation of Turbulent Mixing and Reaction, Livescu, D., Nouri, A., Battaglia, F., & Givi, P. (Eds.). (pp. 47-68).Springer Nature. doi: 10.1007/978-981-15-2643-5_3.

Xiao, C.N., & Senocak, I. (2020). Stability of the anabatic Prandtl slope flow in a stably stratified medium. JOURNAL OF FLUID MECHANICS, 885, a13.Cambridge University Press (CUP). doi: 10.1017/jfm.2019.981.

Xiao, C.N., & Senocak, I. (2020). Linear stability of katabatic Prandtl slope flows with ambient wind forcing. JOURNAL OF FLUID MECHANICS, 886, r1.Cambridge University Press (CUP). doi: 10.1017/jfm.2019.1047.

Yang, D., Streveler, R., Miller, R.L., Senocak, I., & Slotta, J. (2020). Using schema training to facilitate students' understanding of challenging engineering concepts in heat transfer and thermodynamics. Journal of Engineering Education, 109(4), 1-17.Wiley. doi: 10.1002/jee.20360.

DeLeon, R., & Senocak, I. (2019). The Role of Forcing and Eddy Viscosity Variation on the Log-Layer Mismatch Observed in Wall-Modeled Large-Eddy Simulations. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 141(5).ASME International. doi: 10.1115/1.4041562.

DeLeon, R., Umphrey, C., & Senocak, I. (2019). Turbulent Inflow Generation Through Buoyancy Perturbations with Colored Noise. AIAA JOURNAL, 57(2), 532-542.American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/1.J057245.

Xiao, C.N., & Senocak, I. (2019). Stability of the Prandtl model for katabatic slope flows. JOURNAL OF FLUID MECHANICS, 865, r2.Cambridge University Press (CUP). doi: 10.1017/jfm.2019.132.

DeLeon, R., Sandusky, M., & Senocak, I. (2018). Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method. BOUNDARY-LAYER METEOROLOGY, 167(3), 399-420.Springer Nature. doi: 10.1007/s10546-018-0336-8.

Hasbestan, J.J., & Senocak, I. (2018). Binarized-octree generation for Cartesian adaptive mesh refinement around immersed geometries. JOURNAL OF COMPUTATIONAL PHYSICS, 368, 179-195.Elsevier. doi: 10.1016/j.jcp.2018.04.039.

Shrestha, A., & Senocak, I. (2018). Multi-Level Domain-Decomposition Strategy for Solving the Eikonal Equation with the Fast-Sweeping Method. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 29(10), 2297-2303.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TPDS.2018.2829869.

Hasbestan, J.J., & Senocak, I. (2017). A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms. JOURNAL OF COMPUTATIONAL PHYSICS, 351, 473-477.Elsevier. doi: 10.1016/j.jcp.2017.09.056.

Phillips, T., DeLeon, R., & Senocak, I. (2017). Dynamic rating of overhead transmission lines over complex terrain using a large-eddy simulation paradigm. RENEWABLE ENERGY, 108, 380-389.Elsevier. doi: 10.1016/j.renene.2017.02.072.

Umphrey, C., DeLeon, R., & Senocak, I. (2017). Direct Numerical Simulation of Turbulent Katabatic Slope Flows with an Immersed-Boundary Method. BOUNDARY-LAYER METEOROLOGY, 164(3), 367-382.Springer Nature. doi: 10.1007/s10546-017-0252-3.

Şenocak, I., & Jin, H. (2016). Introduction to Scientific and Technical Computing. In Introduction to Scientific and Technical Computing, Willmore, F.T., Jankowski, E., & Colina, C. (Eds.). (pp. 219-233).CRC Press. doi: 10.1201/9781315382395.

Senocak, I., Sandusky, M., DeLeon, R., Wade, D., Felzien, K., & Budnikova, M. (2015). An Immersed Boundary Geometric Preprocessor for Arbitrarily Complex Terrain and Geometry. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 32(11), 2075-2087.American Meteorological Society. doi: 10.1175/JTECH-D-14-00023.1.

DeLeon, R., Jacobsen, D., & Senocak, I. (2013). Large-Eddy Simulations of Turbulent Incompressible Flows on GPU Clusters. COMPUTING IN SCIENCE & ENGINEERING, 15(1), 26-33.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/MCSE.2012.37.

Jacobsen, D.A., & Senocak, I. (2013). Multi-level parallelism for incompressible flow computations on GPU clusters. PARALLEL COMPUTING, 39(1), 1-20.Elsevier. doi: 10.1016/j.parco.2012.10.002.

Santos, F.P., Senocak, I., Favero, J.L., & Lage, P.L.C. (2013). Solution of the population balance equation using parallel adaptive cubature on GPUs. COMPUTERS & CHEMICAL ENGINEERING, 55, 61-70.Elsevier. doi: 10.1016/j.compchemeng.2013.04.012.

Wade, D., & Senocak, I. (2013). Stochastic reconstruction of multiple source atmospheric contaminant dispersion events. ATMOSPHERIC ENVIRONMENT, 74, 45-51.Elsevier. doi: 10.1016/j.atmosenv.2013.02.051.

Thibault, J.C., & Senocak, I. (2012). Accelerating incompressible flow computations with a Pthreads-CUDA implementation on small-footprint multi-GPU platforms. JOURNAL OF SUPERCOMPUTING, 59(2), 693-719.Springer Nature. doi: 10.1007/s11227-010-0468-1.

Gowardhan, A.A., Pardyjak, E.R., Senocak, I., & Brown, M.J. (2011). A CFD-based wind solver for an urban fast response transport and dispersion model. ENVIRONMENTAL FLUID MECHANICS, 11(5), 439-464.Springer Nature. doi: 10.1007/s10652-011-9211-6.

Senocak, I., Henuartner, N.W., Short, M.B., & Daniel, W.B. (2008). Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference. ATMOSPHERIC ENVIRONMENT, 42(33), 7718-7727.Elsevier. doi: 10.1016/j.atmosenv.2008.05.024.

Senocak, I., Ackerman, A.S., Kirkpatrick, M.P., Stevens, D.E., & Mansour, N.N. (2007). Study of near-surface models for large-eddy simulations of a neutrally stratified atmospheric boundary layer. BOUNDARY-LAYER METEOROLOGY, 124(3), 405-424.Springer Nature. doi: 10.1007/s10546-007-9181-x.

Senocak, I., Shyy, W., & Johansen, S.T. (2005). Statistical characteristics of unsteady reynolds-averaged Navier-Stokes simulations. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 47(1), 1-18.Taylor & Francis. doi: 10.1080/10407790490515792.

Senocak, I., & Shyy, W. (2004). Interfacial dynamics-based modelling of turbulent cavitating flows, Part-2: Time-dependent computations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 44(9), 997-1016.Wiley. doi: 10.1002/fld.693.

Senocak, I., & Shyy, W. (2004). Interfacial dynamics-based modelling of turbulent cavitating flows, Part-1: Model development and steady-state computations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 44(9), 975-995.Wiley. doi: 10.1002/fld.692.

Vaidyanathan, R., Senocak, I., Wu, J., & Shyy, W. (2003). Sensitivity evaluation of a transport-based turbulent cavitation model. Journal of Fluids Engineering, Transactions of the ASME, 125(3), 447-458. doi: 10.1115/1.1566048.

Wu, J., Senocak, I., Wang, G., Wu, Y., & Shyy, W. (2003). Three-dimensional simulation of turbulent cavitating flows in a hollow-jet valve. CMES - Computer Modeling in Engineering and Sciences, 4(6), 679-689. doi: 10.3970/cmes.2003.004.679.

Senocak, I., & Shyy, W. (2002). A pressure-based method for turbulent cavitating flow computations. Journal of Computational Physics, 176(2), 363-383. doi: 10.1006/jcph.2002.6992.

Wang, G.Y., Senocak, I., Shyy, W., Ikohagi, T., & Cao, S.L. (2001). Dynamics of attached turbulent cavitating flows. PROGRESS IN AEROSPACE SCIENCES, 37(6), 551-581.Elsevier. doi: 10.1016/S0376-0421(01)00014-8.

He, X., Senocak, I., Shyy, W., Gangadharan, S.N., & Thakur, S. (2000). Evaluation of laminar-turbulent transition and equilibrium near wall turbulence models. NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 37(2), 101-112.Taylor & Francis. doi: 10.1080/104077800274325.

Jacobsen, D.A., & Senocak, I. (2011). A full-depth amalgamated parallel 3D geometric multigrid solver for gpu clusters. In 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.American Institute of Aeronautics and Astronautics (AIAA).Orlando, FL. doi: 10.2514/6.2011-946.

Jacobsen, D.A., Thibault, J.C., & Senocak, I. (2010). An MPI-CUDA implementation for massively parallel incompressible flow computations on multi-GPU clusters. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.American Institute of Aeronautics and Astronautics (AIAA).Orlando, FL. doi: 10.2514/6.2010-522.

Thibault, J.C., & Senocak, I. (2009). CUDA implementation of a Navier-Stokes solver on multi- GPU desktop platforms for incompressible flows. In 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/6.2009-758.

Research interests

Atmospheric transport and...
Cavitation
Computational fluid dynamics
Computational geometry
Parallel computing
Turbulence
Wind energy