Improving Bridge Assessment through integration on Visual Inspection and Non-destruction Evaluation Data

Amir H. Alavi, PhD IRISE ANNUAL MEETING MAY 25, 2022

The Background

D+

The US Federal Reserve Board:

 \geq

Reduction of the national GDP due to failure of civil infrastructure

```
www.washingtonpost.com
```


The America's aging infrastructure

The Problem

Current assessment approaches are generally subjective in nature and provide only qualitative data reflective of surface or near-surface condition

Huge gap exists in:

- Reliability/consistency/implementation of the UAVs over the service life of bridges
- Effective approaches to fuse the collected massive NDE data

Bridge Monitoring Technologies

Project Objectives

- Establish a framework capable of leveraging the data provided by emerging UAV-based and NDE techniques
- Addressing the principal challenges associated with studying the service life of bridge structures:
 - Long-time scales (which requires accelerated aging)
 - The diverse outputs related to bridge condition (in terms of data collected through UAV, NDE, and visual inspection)
- Identifying the synergies among bridge degradation, remaining service life, and the results taken from the multimodal sensing technologies (NDE, and UAV-based)

PITT

Project Approach

Tasks:

Development of Automated Vision-Based Inspection

- Collection of high-resolution and high-temporal data from the BEAST facility
- Advanced data interpretation for UAV data
- UAV data collection strategy

Improvement of Multi-resource NDE Data Interpretation

- Individual NDE data interpretation
- Multi-resource NDE data fusion

Deliverables:

- Final Report
- Technical Articles
- Technical Events (TRB, NEBPP)

The BEAST

Bridge Evaluation and Accelerated Structural Testing Lab (BEAST):

- Full-scale Bridge Systems
- Accelerated Deterioration
- Speed up 30 times
- NDE Data Collected from the BEAST:
- Electrical Resistance (ER)
- Ultrasonic Surface Wave (USW)
- Ground Penetrating Radar (GPR)
- Half Cell Potential (HCP)

- UAV Data Collected from the BEAST:
- HD Images (UAV/Hand-held)
- Infrared Images (UAV/Hand-held)

Automated Vision-Based Inspection

An easy-to-use tool is developed based on the presented methodologies for surface and subsurface damage evaluation

Implementation and Validation on BEAST

UAV Data Collection Strategy

Challenges:

- IR image quality can be affected by many factors
- Investigation in UAV IR data collection strategy is necessary

	Collection #1	Collection #2	Collection #3						
Time	Morning (10 am - noon)	Evening							
Distance from Deck (feet)*	30/40/50/60/70/80	30/40/50/60/70/80	30/40/50/60/70/80						
Camera angles	Vertical/Oblique	Vertical/Oblique	Vertical/Oblique						
Overlap	75%	75%	75%						
Deck condition	Dry	Dry	Dry						
i									
HD Images Same setting as IR image (only before sunset)									

- The necessary temperature change for IRT under passive conditions is at least 8.2° C.
- The temperature changes were 11.1° C at the closest climatological substation to the BEAST facility on April 28th, 2021
 Angle Factor Moderate effect

Distance Factor No significant effect

Multi-resource Data Collected from the BEAST

10 rounds of NDE data collection have been conducted

Data Collection Date	Cumulative Live Load Cycles	Cumulative Freeze-thaw Cycles	Deck Condition Rating (Visual Inspection)	NDE Data Collection (IE/ USW/ER/GPR/HCP)
11/2019	185000	8	-	Х
01/2020	385000	24	-	Х
02/2020	572000	35	X	Х
06/2020	717000	39	-	Х
11/2020	914000	48	X	Х
12/2020	1114000	56	-	Х
03/2021	1323270	70	X	Х
04/2021	1374876	73	Х	Х
06/2021	1671506	85	Х	Х
07/2021	1866006	85	Х	Х

University of Pittsburgh | Swanson School of Engineering

PITT

Statistical Analysis for Individual NDE Data

Condition maps (April 2021)

Multi-resource NDE Data Fusion

Discrete Wavelet Transforms (DWT)

Improved Dempster-Shafer (DS) Evidence Combination Theory

Multi-resource NDE Data Fusion

Since **red** color means high probability of existing **damages**, red parts are segmented out

Comparison Between Individual NDE Results and Fused Results

Comparison Between Individual NDE Results and Fused Results

Individual NDE result does match the trend well

Summary

Automated Vision-based Evaluation

- Surface and subsurface defects detection methodologies
- An easy-to-use tool for DOTs and large—scale implementation
- UAV data collection strategy

> Multi-resource NDE Data Interpretation

- Individual analysis of NDE data collected from BEAST
- Multi-resource NDE data fusion method
- Comparison of individual NDE results and fused results

Acknowledgement

The project is sponsored by PennDOT.

Project Panel

Tom Macioce, PennDOT Keith Cornelius, PennDOT Rich Runyen, PennDOT Brian Rampulla, PennDOT Shelley Scott, PennDOT

Students

Gloria Zhang

Jonathan Buck, FHWA Mike Burdelsky, Allegheny Cc Mike Pichura, MBI

Rutgers

Center for Advanced Infrastructure and Transportation

Thank you

Amir H. Alavi, PhD Assistant Professor Department of Civil and Environmental Engineering University of Pittsburgh E-mail: alavi@pitt.edu

Early Opening of Concrete Pavements to Traffic

Lev Khazanovich, Katelyn Kosar, Lucio Salles, Alex Stevanovic IRISE ANNUAL MEETING MAY 25, 2022

The Research Problem

The current empirical methods for determining traffic-opening criteria are overly conservative.

An innovative mechanistic-based procedure for quantifying the risk of premature failure and long-term damage caused by traffic opening will facilitate reduction of unnecessary construction delays, construction and user costs.

Project Approach

Task A: Literature review
Task B: Laboratory and field testing
Task C: Develop mechanistic-empirical model
Task D: Conduct traffic simulation
Task E: Final Report

PennDOT Strength Criteria (2021)

	Strength for Opening to Traffic, psi								
Slab Thielmose in	Slab Lei	ngth < 10 ft	Slab Length ≥ 10 ft						
Slab Thickness, in	f' _c	MR (3 rd point	f',	MR (3 rd point					
	I _c	loading)	I _c	loading)					
6.0	3000	490	3600	540					
7.0	2400	370	2700	410					
8.0	2150	340	2150	340					
9.0	2000	275	2000	300					
10.0 +	2000	250	2000	300					

Laboratory and Field Testing

Two concrete mixtures:

- 1. Long-Life Conventional
- 2. High Early Strength (7 hours)

Three tests:

- 1. Laboratory: Compressive and flexural strength
- 2. Maturity: Lab and Field
- 3. Ultrasound: Lab and Field

Laboratory Testing

Long-Life Conventional Mix Compressive Strength Development

Field Testing

Variability of concrete properties

Early Age Strength Prediction

PITT IRISE

Risk Assessment

Risk Assessment

Transverse Cracking (bending stress exceeds flexural strength)

Dowel Bar Damage (concrete bearing stress exceeds compressive strength)

PITT IRISE

$$Reliability = 100\% - \frac{1}{Number of Simulations} \sum \left(\frac{Number of Failures}{Total Number of Trucks} \right)$$

Web-Based Tool

PITT IRISE Early Opening to Traffic Analysis

This site is intended only for review by the IRISE project technical panel.

The site does not constitute standards or requirements. In no event will the IRISE members or the authors of this site be liable for damages or expenses resulting from the use or misuse of this site

Last update: 10/08/2021 Help: Open a PDF file with the project report.												8	
	Location			Single Axle	Axles/ 1000	Tandem Axle	Axles/ 100	0 Tridem Axle A	LX		▖▙▖▁▙		
	Region 1: Erie County		~	Load, kips	trucks 57.07	Load, kips 24	trucks 71.16	Load, kips tr 34 0	ru	C LA		i gildi Ta	, and ge
	Construction Month	Number of Trucks/ day	Traffic Pattern	18	68.24	28	95.79	40 0				┛╻╻	_
	May 🗸	10	Minor Arterial 🗸	20	41.82 9.69	32 36	109.54 78.19	46 0 52 0			1 - ``	╺╸┛┚	
	PCC Thickness, in	PCC COTE, 10-8 1/9F	Joint Spacing, ft	24	4.16 3.52	40 44	20.31 3.52	58 0 64 0					
	7	0.000005	15	28	1.78	48	3.03	70 0					
	Base Thickness, in	Base Modulus, psi	Shoulder	30	0.63	52 56	1.79	76 0 82 0					• •
	7	40000	Tied PCC V	34	0.19	60	0.57	88 0				▖▝▙▝▀	
	·	40000	ned FCG										
	Design PCC Flexural Streng	jth, psi Dowel Dia	meter, in										
1	650	1			_								
1	NDT evaluation method	Compressive PCC	strength @ opening, psi										
N	Shear wave velocity	✔ 1900						_					
	Opening PCC SWV, m/s, °	PCC Flexu	ıral Strength @ opening, psi							CC	CAN		
	2508	483											
					NDT evalu	ation method		Compressive PC	c0				
	PCC Strength - N	NDT results Mode	els		Maturity		~	1900					
	Long-term MR, psi	Long-term f'c, psi			PCC Matu	ity at the time	of opening,	°C- PCC Flex	kural Strength (@ opening, psi			
	850	5500	ultimate strength		hr	<u> </u>		483					
					479								
	A _s B _s												
	0.00193462 -5	5.417 M _r = M _{ru}	⊧exp(A₅ SWV+B₅)		PCC S	trength -	- NDT r	esults Mod	leis				
	Am Bm					m MR, psi		-term f'c, psi					
			exp(-(A/Maturity) ^B)		850		550	00	ultimat	e strength			
			,, (,										
	C _m D _m												
	508.09 1.	.039 f' _c = f' _{cu}	exp(-(C/Maturity) ^D)		Am	E	B _m						
					273.44		1.017	$M_r = M_r$	_{ru} exp(-(A/M	aturity) ^B)			
	Submit Settings												
					Cm		D _m						
					508.09		1.039	$\mathbf{f}_{c} = \mathbf{f}_{c}$	u exp(-(C/Ma	aturity) ^D)		C	DICI
					Submit	Settings							
	Linive	orcity of Di	ttchurgh			Gerangs					2 A 11 A 2		
	UNIVE	ersity of Pi	i i i sourgi	1 24AG						0			

Web-Based Tool

🐨 Odessa 🐟 My file: 🕎 PG 144 🗻 Delta A 🚔 Delta A 🏶 Home: 🐟 2022_m 📀 Earl 🗙 🔊 Arab N 🌚 PittRigi 😋 My Me 👗 PittRigi 🥸 Launch XM Online G how to 📄 https://	+ ~	- 0	×
← → C (i pittearlyopenpcc.azurewebsites.net	🖻 🖈 🖊	* 🗆 🌔	:
🔢 Apps 📃 SIGNAL PROCESSIN 🔇 Reviews - Graduate 🗘 ScholarOne Manus 🛞 All Articles by Topic 📖 Admissions by Liais ¼ Home Program 🔇 PaveXpress: A Simp 鞭 ITPACK Home Page 🔳 lin	alg 🚯 Yousef Saa	d SOF	>>

PITT IRISE Early Opening to Traffic Analysis

This site is intended only for review by the IRISE project technical panel.

The site does not constitute standards or requirements. In no event will the IRISE members or the authors of this site be liable for damages or expenses resulting from the use or misuse of this site.

Last update: 10/08/2021

Help:

Open a PDF file with the project report.

Location			-	Axles/ 1000 Tar	Tandem Axle A	Axles/ 1000	Tridem Axle	Axles/ 1000		
Region 1: Erie County		Load, kips	trucks	Load, kips	trucks	Load, kips	trucks			
		16	57.07	24	71.16	34	0			
Construction Month	Number of Trucks/ day	Traffic Pattern		18	68.24	28		40	0	
Mari	40	Minor Astanial		20	41.82	32	109.54	46	0	
May 🗸	10	Minor Arterial	~	22	9.69	36	78.19	52	0	
PCC Thiskness in	PCC COTE, 10-6 1/ºF	loint Specing ft		24	4.16	40	20.31	58	0	
PCC Thickness, in	PCC COTE, 10 - 1/-F	Joint Spacing, ft		26	3.52	44	3.52	64	0	SCAN ME
7	0.000005	15		28	1.78	48	3.03	70	0	
				30	0.63	52	1.79	76	0	
Base Thickness, in	Base Modulus, psi	Shoulder		32	0.54	56	1.07	82	0	
7	40000	Tied PCC	~	34	0.19	60	0.57	88	0	
650	1 Compressive PCC	strength @ opening, p	si							
Shear wave velocity	▶ 1900									
P Type here to searc	h	o 🗄 🔟 🤇	0	🤞 🛞 😵	2 🧿 🚍	🔯 🚺 🧕) 🙆 🎯	🖏 📴 📔	. _	📥 56°F ^ @ 🗕 🕼 🛥 🕬 🖉 2:08 AM
										PITT IRISE

MAKEN

Analysis of Work-Zone User Delay Costs

Considered arterial and freeway networks

- Faster construction has a significant impact on user cost for arterial roads
- User delay costs for freeways must consider more factors to determine significance

Time of day	Passenger Car Delay (h)	Heavy Vehicle Delay (h)	Bus Delay (h)	Total
AM peak	287.6	1.9	2.0	291.5
Mid-day	581.7	4.1	4.1	589.8
PM peak	222.8	1.4	1.6	225.8
Evening	239.3	1.8	1.7	242.7
Free Flow hours	547.2	5.3	3.9	556.4
Total Delay (h)	1,878.5	14.4	13.2	1,906.2
User Delay Cost (\$)	67,064.0	377.0	2,998.7	70,439.7
Vehicle Operating Cost (\$)	49,217.9	2,297.8	1,689.7	53,205.4
Total User Cost of Delay (\$)	116,281.9	2,674.7	4,688.4	123,645.1

Cost of Delay Caused by Work-Zone for Pittsburgh Downtown Network

Final Report

SUMMARY REPORT

Early Opening of Concrete Pavements to Traffic

IRISE-21-P20-03-01 • DECEMBER 2021

IRISE Consortium

Impactful Resilient Infrastructure Science and Engineering

PITT IRISE

PITT IRISE