
University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

1 | 11

Case Study with Supporting Media and Simulation Exercise

Title: Cybersecurity Risks in Healthcare

__

Real World Inspiration

In the United States, an estimated 350,000 people use insulin pumps. These medical devices
allow patients with diabetes to manage their blood sugar in a convenient way, with neither frequent
hospital visits nor daily insulin injections through needles (syringes or pens). Because devices are
essential to the diabetics wearing them, if the pumps malfunction or are successfully attacked by
a malicious actor, the wearer may become very sick or even die. The consequences of even a
single medical device being hacked are too drastic; therefore, it is of great importance for the
manufacturers of these devices to consider Cyber Informed Engineering (CIE) principles at every
step of their design process.

If an unauthorized user gains access to a device such as an insulin pump, the hacker has
several possible paths of harmful action. The outside source could take more of a read-only
stance, where they merely monitor the patient’s current data. The much more serious possibility,
however, would be if the hacker uses their illicit access to change the commands being sent to
the pump. Such commands may involve significantly increasing the amount of insulin released in
the next dose. Similarly, a hacker might rapidly release successive insulin doses, likewise driving
up the amount of insulin the patient receives.

As you could imagine, the aforementioned attacks have huge consequences for the user of
the insulin pump. A patient with too much insulin runs the risk of insulin overdose. The symptoms
follow those of hypoglycemia –when there is not enough sugar in the bloodstream–and include
milder symptoms such as confusion, irritability, or dizziness as well as more severe cases
featuring seizures or a loss of consciousness. The most severe cases risk coma and death [1].
Yet, even if the hacker does modify pump commands, monitoring the insulin pump’s data is still
harmful to the patient as their personal information has now been stolen; it is no longer confidential
between themselves and their doctor or others, and the integrity of data is low. This lack of
confidentiality now has serious implications for the patient’s medical provider. It brings about the
potential for medical malpractice and wrongful death lawsuits, leading to overall decreased trust
in the organization and reputational damage.

In the case of an insulin pump, or any implantable medical device (IMD), the device works in
conjunction with a ‘programmer,’ an external device that is responsible “for communicating
wirelessly with an IMD and relaying data to a device used by clinicians or other health care
providers.” [2] Many insulin pumps currently on the market use certain technologies and settings
to make insulin delivery easier on the patient. For example, many include glucose-monitoring
technology to change amounts of insulin release based on glucose levels. They also include
alarms triggered by low battery, low insulin reservoir, or out-of-range glucose levels. Most also
connect wirelessly to phones or other technological devices [3]. To familiarize yourself more with
the interface of an insulin pump, feel free to explore the interactive Medtronic insulin pump
simulator linked below [4].

The aforementioned wireless connection is one of the main causes for concern regarding
insulin pump security. For example, the FDA warned of the possibility for “an unauthorized person
to gain access to a pump while it was pairing with other system components…” [5] This wireless
connection is truly the main vulnerability. In the National Vulnerability Database [6], the majority
of insulin pump related vulnerabilities focused on an unprotected wireless communication that
allowed unauthorized users access to the insulin pump. There have been a few controlled cases
within security conferences where professionals demonstrated the ability to connect to insulin
pumps without knowing the devices’ ID numbers. In 2012, Barnaby Jack infamously emptied an

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

2 | 11

insulin pump reservoir into a mannequin from a distance of 300 feet [7]! This was possible
because the wireless channels lacked encryption and authentication [7]. The lack of security
measures for the wireless communication channels of these insulin pumps allows hackers an
easy way into the device. Once in, there is also the vulnerability of the broad setting ranges of the
pumps. It creates the potential for hackers to release very large doses without being stopped.

CIE Principles

To combat these vulnerabilities, it is of much importance to start considering CIE principles at
every step of the engineering process. The CIE principles encourage mechanical designs that
minimize attack surfaces and cybersecurity risks in conjunction with the implementation of
software and/or security controls. Rather than viewing cybersecurity purely as a software
consideration, it can be much more beneficial for the hardware itself to additionally include design
features that mitigate the risk of cyber attacks. In the case of an attack on an insulin pump, there
are a few CIE principles that feel extremely relevant. Take principle #6 ‘Active Defense’ for
example. This principle asks the key question: How do I proactively prepare to defend my system
from any threat? Principle #2 ‘Engineered Controls’, which asks How do I select and implement
controls to reduce avenues for attack or the damage that could result? Principle #10 ‘Planned
Resilience’ is another great one to keep in mind. Its key question is How do I turn “what ifs” into
“even ifs”? These principles prioritize thinking creatively and proactively to include design features
as solutions, and they would be great ones for you to think about as you go on to the lab
simulation.

Media Feature for the General Audience

For a custom media clip designed by faculty and students of the University of Pittsburgh,
please click on the video file found here: https://youtu.be/oW6uF47_zjc

The media attached is an introduction into the dangers of cybersecurity in wearable medical
devices to the users themselves as well as doctors and medical practitioners. Through the
structure of a fictional news feature, the video explores what the vulnerabilities are in wearable
medical devices that can be controlled remotely, what the risks are, and what is being put in place
to protect them. The video also explores how cyber-informed engineering may lead to a more
secure solution to those vulnerabilities rather than typical computer-science-based cybersecurity.
It concludes open-ended with how these devices can continue to become safer for their users.

Future Policy Implications

Organizational policy decisions related to wireless insulin pumps rely on the requirements and
guidance issued by various agencies. In the United States, regulatory responsibility for the
cybersecurity of medical devices resides primarily with the Food and Drug Administration, or FDA.
Via the Federal Food, Drug, and Cosmetics Act, this administration is authorized to oversee the
production process of medical devices and conduct post-market surveillance [11]. The FDA works
closely with the Cybersecurity and Infrastructure Security Agency (CISA), an organization that
releases public advisories describing emergent cybersecurity vulnerabilities and exploits [11].
This collaboration has generated a comprehensive web of best practices for the manufacturing of
wireless insulin pumps that serves to supplement mandatory regulations. However, the creation
and release of medical devices also depends on laws not strictly focused on cybersecurity. Chief
among these is the Health Insurance Portability and Accountability Act (HIPAA), which elaborates
standards for the protection of patients’ health information [11].

To varying degrees, these agencies and laws dictate the organizational policies of two main
stakeholders: the companies responsible for manufacturing wireless insulin pumps, and the
healthcare providers responsible for prescribing them to patients. The primary role for policy

https://youtu.be/oW6uF47_zjc

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

3 | 11

experts within manufacturing companies, typically represented by a designated compliance
department, is to bring products into accordance with FDA regulations and CISA
recommendations to legally (and competitively) enter the market. On the pre-market side, this
involves the assembly of a software Bill of Materials (SBOM), hardware end-of-life instructions,
complete system specifications and diagrams, and risk management documentation [8]. FDA
post-market guidance proves similarly robust; manufacturers are encouraged to maintain an up-
to-date threat model supported by risk assessment tools such as the Common Vulnerability
Scoring System [8]. Other recommended measures, such as participation in information-sharing
organizations like H-ISAC, further help to clarify manufacturers’ perceptions of the industry-wide
vulnerabilities [8].

Comparatively, for compliance departments within healthcare providers, HIPAA takes on
somewhat of a greater role than the FDA or CISA. For instance, HIPAA stipulations determine
healthcare organizations’ practices regarding the disclosure of protected health information to a
medical device company representative [12]. However, perhaps a larger influence on healthcare
provider policy rests with the procurement departments and committees of medical professionals
responsible for choosing which insulin pumps to prescribe in the first place. Because a higher
degree of dependence on wireless networks translates into a higher number of potential
vulnerabilities to account for, medical professionals who prescribe medical devices
overwhelmingly opt for the least connected options available. This policy successfully stifles any
possibility of a cyberattack or resultant personal injury lawsuit but discourages the development
of more efficient medical devices. Thus, medical device manufacturers are bound not only by the
regulations imposed via the FDA, but the need to reassure and generate buy-in from healthcare
networks.

Expand Your Understanding with a Laboratory Exercise

(a) Use Case

This use case illustrates the substantial damage a malicious actor can cause to a patient with
an unsecured insulin pump and the extent to which hardware restrictions can mitigate this
damage. As such, the laboratory seeks to highlight the engineered controls principle.

Caution: the values in this simulation are not reflective of a real diabetic. All values are fudge
factors set to emulate semi-realistic experience.

(b) Program Introduction

In this exercise, we use Python. The Python simulation is created according to the object
oriented programming paradigm, with separate objects representing an insulin pump system’s
primary components: the pump, a microprocessor, and a blood glucose sensor. Additional objects
were made to represent the patient and an aggregate of all the previously mentioned objects, the
full “system.”

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

4 | 11

Figure 1: (Above) Overall simulation structure. Green arrows represent data flow, with earlier steps in lighter

shades of green.

Figure 2: (Above) Arrangement of objects within the Insulin_System object. Green arrows represent data flow
into and out of the Insulin_System object, while purple arrows represent data flow within the Insulin_System

object.
 The Body object attempts to simulate bodily response to carbohydrate and insulin intake
through a set of differential equations found in [13]. However, those differential equations were
(heavily and) arbitrarily modified to suit this simulation, with more details are available in the code
file itself. Similarly, while the Controller object calculates insulin boluses based on a PID algorithm
described in [14] and [15] (the blood glucose target of 120 mg/dL from [15] is not used here).

(c) Simulation Set-Up

Please make a copy of the provided Python notebook (Python 3.10 or higher is needed to
run the code). Read through the provided objects and run each block after you finish reading it.
Please proceed to examine the “Insulin Pump Simulation v2” block. This block presents you as a
type-1 diabetes patient equipped with a fully automatic insulin pump system.

(d) Tasks of this Exercise

Task 1: Observe the Simulation’s Automated Response to Carbohydrate Intake

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

5 | 11

Navigate to the Colab toolbar (or Jupyter notebook toolbar), select the “Runtime” dropdown menu,
and click “Run all.” This should immediately navigate you to the relevant simulation.

You should be presented with a list of choices. Except for “Wait,” “Eat,” “Log In,” “Device
Information,” and “Exit,” the other commands require a higher-than-default level of system access.

Please use the “Wait” and “Eat” commands to simulate an individual’s food intake for at least a
24 hour period. For example, you could eat 800 calories for breakfast, wait 360 minutes until
lunch, eat 400 calories for lunch, wait 360 minutes for dinner, eat a large, 1200 calorie dinner,
and sleep (wait) for 720 minutes. Once you have simulated eating for a personally satisfactory
duration, enter the “Exit” command to view graphs of blood glucose and insulin levels for up to
the past 2000 minutes.

Consider:

● How is a patient’s blood glucose level related to their insulin level?
● There are three levels of low blood glucose, or hypoglycemia, with the least significant

level beginning at 70 mg/dL (70 units in the simulation) [9]. A hungry adult is expected to
have a blood glucose level between 80 and 130 mg/dL, and an insulin pump should aim
to lower blood sugar after a meal to less than 180 mg/dL within 2 hours of the meal [10].
Does the provided insulin pump simulation maintain the patient at a reasonable blood
sugar level? Consider modifying the insulin pump’s insulin delivery logic to achieve better
patient outcomes. Modifying the insulin pump’s logic requires re-coding the Controller
class’s auto_cycle method.

Task 2: Exploiting Improper Authentication

The pump is purposefully designed to mimic Jay Radcliff’s 2011 insulin pump hacking exhibit [7]:
when not logged in, the user can still query the pump for identifying information that contributes
to a formulaic password. In this case, the pump returns a device identifier which is appended to
a root password “SHURE_pump_”.

Re-execute the “Insulin Pump Simulation v2” code block and use the “Device Information” option
to find the pump’s identification number. Try to configure one of the options which requires logging
in to change before and after logging in.

Consider:

● Which cyber-informed engineering principles best relate to this vulnerability?
● How might this vulnerability be addressed?
● Is it absolutely possible to eliminate improper authentication?

Task 3: Examine the Power of Logging-In

The insulin pump simulation’s password is “SHURE_pump_000000001.” This password enables
the user to use all of the simulation’s menu’s options. In task 1, the insulin pump user’s only
options were eating and waiting: this limited autonomy is rare and might only occur for young
children whose guardians are responsible for managing the insulin pump. Comparatively, task 3
posits you as a patient managing his/her own insulin pump to demonstrate the dangers
associated with access to insulin pump controls.

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

6 | 11

Please rerun the “Insulin Pump Simulation v2” code block and login (on each code block rerun)
before proceeding with the following subtasks.

First, you may attempt to induce hyperglycemia in the insulin pump user. This may be
accomplished by setting the basal rate to 0.0 and disabling the pump’s AI. Then, proceed to wait
and eat as in task 1. For illustrative purposes, it is advised to eat at least 2000 calories to
ensure the body’s initial insulin pool fails to prevent hyperglycemia.

Next, you may attempt to induce hypoglycemia. While it remains crucial to log in for this task, it
is unnecessary to change the basal rate or disable the pump’s AI. Rather, while continuing to
feed the subject as usual, rapidly deliver a succession of large insulin boluses (20, 30 insulin
units).

Consider the following:

● If a malicious actor managed to remotely login to the current insulin pump system, they
could push the pump user into either hyper- or hypoglycemia. How might this be
prevented?

● Which cyber-informed engineering principles (best) address this vulnerability?
● Suppose that, given the physical capability to transmit and receive information, it is

impossible to prevent malicious actors from obtaining remote control of the insulin
pump’s full functionality. Would it be worthwhile for insulin pumps to retain wireless
capability?

Task 4: Code an Engineered Controls Countermeasure.

It’s time to put your considerations into motion! In accordance with the cyber-informed engineering
principle of “engineered controls,” please modify the provided “Pump_Pro” class to mitigate the
dangers associated with malicious remote control.

The “Pump_Pro” class is located in the code block after the “Insulin Pump Simulation v2” code
block. You may assume the “max_bolus,” “max_basal,” and “delay” instance variables never
deviate from the values presumed by the class constructor. In a physical system, these variables
would be stored in a removable read-only micro-SD (ROM, read-only memory) card (or something
similar) which a licensed healthcare provider configures and provides to the end user.

In the corresponding physical system, the ROM card would serve as a boot drive for a supervisory
microprocessor built into the pump. The code you write in the Pump_Pro class is also baked into
the ROM, but the supervisory microprocessor would also have some read and write enabled
memory for any necessary data storage.

Although your contribution to this task is purely software engineering, because it is software for a
hardware modification to the insulin pump system, the countermeasure as a whole may be
categorized as either an engineered control and/or an active defense.

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

7 | 11

Figure 3: (Left) Regular Pump object. (Right) Pump_Pro object with an engineered controls countermeasure.

As noted in the code document, it is recommended to create three insulin dosage restrictions:

1. Limit the maximum insulin basal rate to 2.0 units per hour
2. Limit the maximum bolus dose to 30.0 units
3. Enforce a three-hour cooldown period between insulin bolus-es

Please test your coding against the hyperglycemia and hypoglycemia routines from task 3.
Remember to run the “pump class with restrictions” and “insulin system equipped with Pump_Pro”
code blocks before the “Insulin Pump Simulation with CIE Protection” code block containing your
modified version of the insulin pump simulation!

Consider:

● Were the engineered controls successful against hyperglycemia (high blood sugar
condition)?

● Were the engineered controls successful against hypoglycemia (low blood sugar
condition)?

● How could the countermeasures be improved?
● This task specifically addresses the “engineered controls” principle. What would be a

countermeasure that addresses the “active defense” principle?

Further Reading and Useful Public Video Links

For further reading, the following references would be suitable to explore at your convenience.

[1] Morales-Brown, Peter. “Insulin Overdose: Dosage, Symptoms, and Treatment.” Medical

News Today, MediLexicon International, 2 Aug. 2023,

www.medicalnewstoday.com/articles/317300.

[2] M. Rushanan, A. Rubin, D. Kune, and C. Swanson, “Sok: Security and Privacy in

Implantable Medical Devices and Body Area Networks,” IEEE Symposium on Security and

Privacy, May 2014. ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6956585&tag=1.

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

8 | 11

[3] Cleveland Clinic medical. “Types of Insulin Pumps.” Cleveland Clinic, 11 Dec. 2023,

my.clevelandclinic.org/health/articles/insulin-pumps.

[4] Medtronic,

us.medtronicvirtualpump.com/gTl7X5011ly6IjOlU/VirtualDemoPump/MiniMed_780G_EC/5

C/MMT-1884/.

[5] FDA Warns of Cybersecurity Risk with Certain Medtronic Insulin Pumps | Reuters, 21 Sept.

2022, www.reuters.com/business/healthcare-pharmaceuticals/fda-warns-cybersecurity-risk-

with-certain-medtronic-insulin-pumps-2022-09-20/.

[6] Booth, H. , Rike, D. and Witte, G. (2013), The National Vulnerability Database (NVD):

Overview, ITL Bulletin, National Institute of Standards and Technology, Gaithersburg, MD,

[online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915172

[7] Klonoff, David C. “Cybersecurity for connected diabetes devices.” Journal of Diabetes

Science and Technology, vol. 9, no. 5, 16 Apr. 2015, pp. 1143–1147,

https://doi.org/10.1177/1932296815583334.

[8] Synopsis. “Securing Connected Medical Devices for FDA Submissions.” Synopsis, 2021,

www.synopsys.com/content/dam/synopsys/sig-assets/whitepapers/wp-securing-connected-

medical-devices-fda.pdf

[9] Skoler, Eliza, and Matthew Garza. “Low Blood Sugar – Hypoglycemia 101.” DiaTribe,

diaTribe, 2 Feb. 2022,

diatribe.org/diabetes-management/low-blood-sugar-hypoglycemia-101.

[10] Hoskins, Mike. “Helping You Understand ‘normal’ Blood Sugar Levels.” Healthline,
Healthline

Media, 15 Sept. 2022,

www.healthline.com/health/diabetes/normal-blood-sugar-level#target-glucose-goals.

[11] United States Government Accountability Office. “Medical Device Cybersecurity: Agencies

Need to Update Agreement to Ensure Effective Coordination.” GAO, Dec. 2023,

www.gao.gov/assets/d24106683.pdf.

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

9 | 11

[12] Office for Civil Rights. “FAQ 490.” U.S. Department of Health and Human Services, 28 Dec.

2022, www.hhs.gov/hipaa/for-professionals/faq/490/when-may-a-covered-health-care-

provider-disclose-protected-health-information-without-authorization/index.html.

[13] Al Ali, Hannah, et al. “Examining Type 1 Diabetes Mathematical Models Using Experimental

Data.” International Journal of Environmental Research and Public Health, vol. 19 no. 2,

2022, https://doi.org/10.3390/ijerph19020737.

[14] Cinar, Ali. “Automated Insulin Delivery Algorithms.” Diabetes Spectrum, vol. 32 no. 3, 2019,

https://doi.org/10.2337/ds18-0100.

[15] Thomas, Andreas, et al. “Algorithms for Automated Insulin Delivery: An Overview.” Journal

of Diabetes Science and Technology, vol. 16 no. 5, 2021,

https://doi.org/10.1177/19322968211008442.

Authors

Karlynn Riccitelli, University of Pittsburgh Class of 2026. Interests include the intersection of
English and Computer Science, in combination with Digital Media and User Experience Design.

Naomi Taylor, University of Pittsburgh Class of 2025. Interests include film direction,
cinematography, and photography.

Casey Withers, University of Pittsburgh Class of 2025. Interests include applied statistics,
comparative politics, and data science.

Lambert Zhang is an engineering science major at the University of Pittsburgh with a
concentration in engineering physics. He is expected to graduate in Spring 2025 and
appreciates the feeling of accomplishment associated with assembling devices.

Appendix

Run All Command:

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

10 | 11

Figure 10: The “Run all” command, circled with a red box.

Menu Options:

Figure 11: A screenshot of the simulation’s user options. Options which can be used without logging in are

denoted in green, while options which require logging in are surrounded with red.

Insulin Delivery Algorithm:

University of Pittsburgh SHURE-GRID Program sponsored by Idaho National Laboratory

11 | 11

Figure 12: A screenshot of the method within the simulation’s controller class that automatically calculates an

appropriate insulin dose.

Region to Add Restrictive Code:

Figure 13: A screenshot with the place to write restrictive logic boxed in red ink.

