

Developing Lightweight and High-Performance Metamaterial Concrete

Amir H. Alavi, PhD
University of Pittsburgh

Research Problem

For more than a century, concrete technology advances rely mainly on modifying mix compositions

Future performance must be reimagined via internal architectural design

Mechanical metamaterials offer a transformative path, geometry over composition

Reengineering concrete with tunable strength and energy absorption functionalities in a lightweight, structurally efficient form

Mechanical Metamaterials

Metamaterials

- Artificial structures
- Often arranged in repeated patterns
- Derive their properties from their designed structure
- Shape, geometry, size, orientation and arrangement

Metamaterial Types:

- Electromagnetic Metamaterial
- Photonic or Optical Metamaterial
- Mechanical Metamaterial (MM)
 - Extremal metamaterials
 - Negative metamaterials
 - Ultra-property metamaterials

Zadpoor, 2016, Materials Horizons. DOI: 10.1039/C6MH000650

Schaedler et al., 2011, Science. DOI: 10.1126/science.1211649

Vision

A fundamental shift in the science of concrete design, and more broadly civil infrastructure materials, from compositionally defined to architecturally defined

"Structure-specific" metamaterial concrete enables tailored solutions for lightweight and high-strength civil infrastructure systems

Project Objectives & Approach

Objectives:

> Developing lightweight and high-performance metamaterial concrete

Approach:

- Mechanical metamaterial design
- Evolutionary generative AI
- Mechanical characterization

Specific strength:

0.062 MPa-m³/kg

Optimal Cementitious Designs

Four representative designs based on their K values, VF, and manufacturability

Ultra-high-performance concrete (UHPC) mix as the parent/bulk material

The density reduction is independent of the type of cementitious bulk materials

Results

Mild steel (~0.027 MPa·m³/kg), structural steel (e.g., ASTM A36 ~0.025-0.035 MPa·m³/kg), high-strength low-alloy steel (e.g., ASTM A992 ~0.030-0.045 MPa·m³/kg), and common construction aluminum alloys (e.g., 6061-T6 ~0.040-0.065 MPa·m³/kg)

Large-scale implementation

The transition from laboratory-scale research to large-scale implementation is a crucial step

Impact

Engaging students in hands-on projects with advanced materials inspires broader interest in the future of civil infrastructure design

- Our Pitt ASCE Student Chapter developed bridge prototypes using GAI-designed metamaterials
- Achievements in the 2025 ASCE Mid-Atlantic East & West Student Symposium at Penn State:
 - □ 2nd place in structural efficiency & stiffness (Steel Bridge)
 - □ 1st place in structural efficiency (3D Printed Bridge)
- First-ever academic use of mechanical metamaterials in a civil engineering competition

Conclusion & Further Works

- **Demonstrated Feasibility:** Successfully validated GAI-driven structure-specific metamaterial concrete as a strong, lightweight alternative to conventional concrete
- Enhanced Performance: Showed significant improvements in strength-to-weight ratio with metamaterial concrete

Future Directions:

- ✓ Clear protocols for material selection, 3D printing, and modular prefabrication ensure their efficiently into construction workflows
- ✓ Flexural performance can be improved using strategies like post-tensioning, external reinforcements, and grout encapsulation tailored to their geometry
- ✓ Field testing and regulatory code development are critical for scaling structure-specific metamaterial concrete in bridges, pavements, and modular infrastructure

Acknowledgement

Project Panel

Tyler Culhane, PennDOT
Nick Shrawder, PennDOT
Ezequiel Lujan, FHWA
Ryan Rago, PA Turnpike
Viswanath Venkatesh, PA Turnpike
Kenneth Urbanec, Allegheny County

Graduate students

Wendy Lu James Luo Daeik Jang Shayan Baktash

Undergraduate students

Emanuela Esposito Sophia Roa Spencer Landon

