

Thirty-Sixth Annual INTERNATIONAL PITTSBURGH COAL CONFERENCE

University of Pittsburgh · Swanson School of Engineering

AN OPTIMUM SOLUTION FOR COAL POWER PLANTS TO REDUCE CO₂ EMISSIONS

Plenary Speaker:

Ahmed Aboudheir, Ph.D., P.Eng., President, Aboudheir Consulting Ltd., Regina, SK, S4V 2T8, Canada

SO₂ and CO₂ Removal from Flue Gases

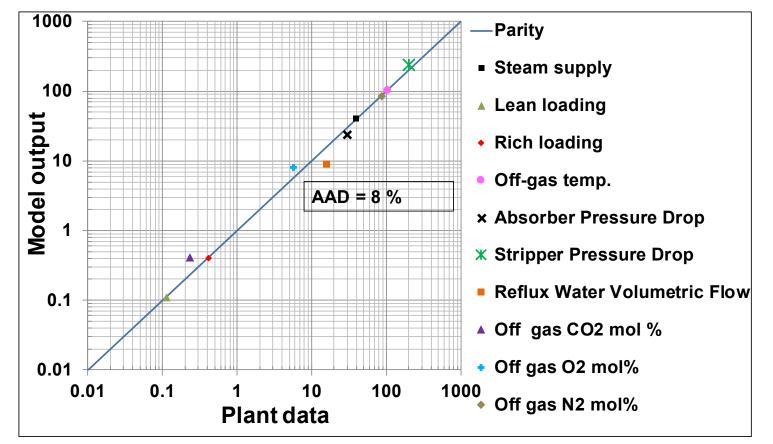
- Main sources of SO₂ and CO₂ emissions are the fossil fuel-fired boilers; coal, oil & natural gas
- Environmental regulations are the driving force for process selection and its design criteria
 - In 1920, limits on Sulfur Dioxide
 - In 1929, SO₂ removal from large power plant became legal requirement
 - In 1997, CO₂ should be limited, as recommended at the Kyoto Conference, Japan
 - SO_2 removal target is < 10 ppm before the CO2 capture process using amines.
- The removal of SO₂ and CO₂ from flue gases is important in many environmental & industrial applications
- Commercially available technologies but still there is work required to reduce capital and operating expenditures; CAPEX and OPEX

CCSU large-scale facilities in operation and construction by industry (Carbon Capture Journal, Issue 61, Jan/Feb 2018)

Technology Selection for CO₂ Capture Plants

- CO₂ capture by reactive liquid is a proven & leading industrial technology
- Amines based solvents are available commercially
- Flue gas pre-treatment technologies to protect the solvents are proven and available commercially
- Solvent reclaiming process is required to maintain the solvent efficiency

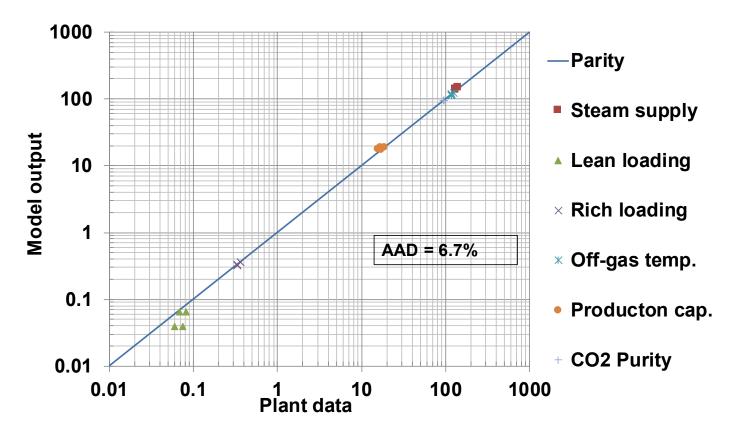
AES CO_2 Capture Plant; Cumberland, Maryland, USA In Operation Since 1998, 130 TPD of CO_2



Plant Data Versus Predicted Data, ±8% average absolute deviation

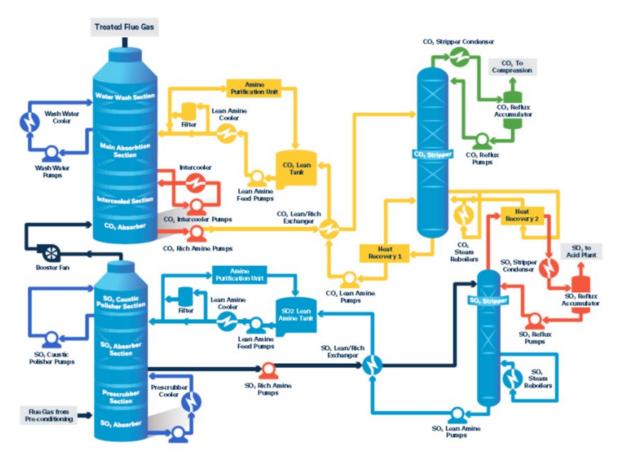
Ahmed Aboudheir and Walid Elmoudir / Energy Procedia 37 (2013) 1509-1516

SVM CO₂ Capture Plant; California, USA 800 TPD CO₂, In Operation Since 1977



SVM, Measured and Predicted Performance, AAD% ± 6.7

Ahmed Aboudheir and Walid Elmoudir / Energy Procedia 37 (2013) 1517 – 1522


Boundary Dam CO₂ Capture Plant, 2014 Saskatchewan, Canada, 3000 TPD

www.saskpower.com

SHELL CANSOLV'S COMBINED SO₂ AND CO₂ CAPTURE PROCESS

ieaghg report Number 2015/06, August 2015

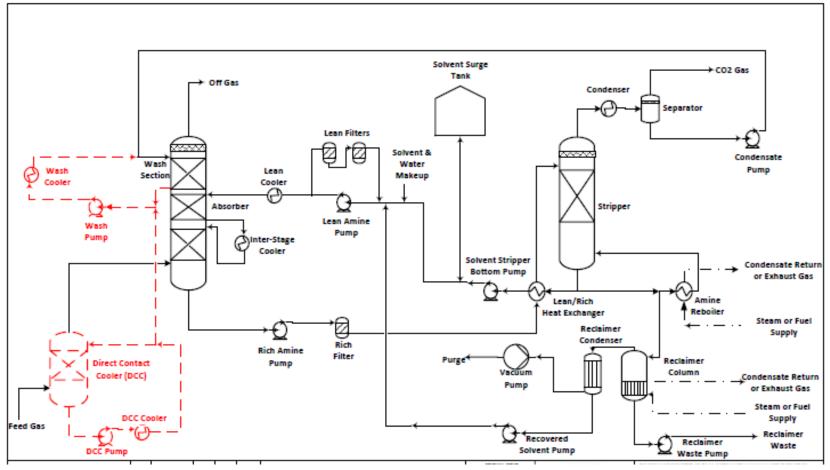
Parish Petra Nova CO₂ Capture Plant, 2016 Texas, USA, 4,800 TPD of CO₂

- 16-foot-Diameter Flue Gas Duct (5 m)
- 120-foot-tall quench tower (37 m)
- 360-foot-tall Absorber Tower (110 m)
- 160-foot-tall Stripper Tower (49 m)
- 27-foot-diameter
 Stripper Tower (8 m)

Power, Vol. 161, No. 8, August 2017, P. 20-25

www.nrg.com/generation/projects/petra-nova/

What are the main design parameters affecting the commercial post combustion CO_2 capture plants?


- Process configuration & plant water balance design
- Energy type & its sources
- Solvent type & its composition
- Solvent reclaiming & reuse

Using **proper process configuration** & **optimum plant design** can significantly reduce CAPEX and OPEX.

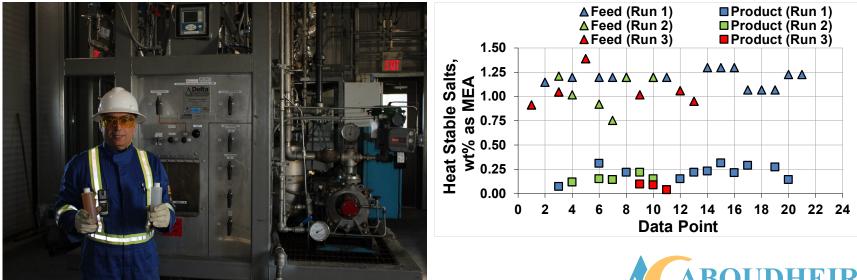
→ No utilities from the Power Plant is required.

Using **Direct Fired Reboiler** to provide the required heat duty for the CO₂ Capture Plant and Solvent Reclaiming Unit. → No steam from the Power Plant is required.

Husky Demo CO₂ Capture Plant

Husky Energy

Direct Fired Reboiler


→ can reduce the CAPEX significantly

ltem	Petra Nova CO ₂ Plant	MEA CO ₂ Plant Design	Note
Plant Capacity, ton/day	5,265	5,270	Short tons
CO ₂ Purity, %	> 96	>96	Water saturated
CO ₂ Recovery Rate, %	90	90	As per DOE
Flue gas rate, lb/hr	2,827,000	2,850,000	Coal flue gas
Solvent type	*KS-1	30 wt% MEA	*Formulated Solvent
Solvent rate, lb/hr	*Not reported	5,950,000	*Confidential
Absorber diameter	*30 ftx40 ft	49	*Rectangular Column
Absorber packing depth	100 ft	< 40 ft	Reaction zone

Using proper design for the Solvent Reclaiming System

➔ will maintain the solvent efficiency, stable CO₂ production capacity, less solvent makeup, minimum emission to atmosphere, and minimum waste for disposal.

Thirty-Sixth Annual INTERNATIONAL PITTSBURGH COAL CONFERENCE

University of Pittsburgh · Swanson School of Engineering

THANK YOU ...

For more information, please contact:

Ahmed Aboudheir, Ph.D., P.Eng. Aboudheir Consulting Ltd., Regina, SK, S4V 2T8, Canada Tel (W) : +1.306.585.6429 Tel (M) : +1.306.501.8227 e-mail : president@aboudheir.ca Website: www.aboudheir.ca

