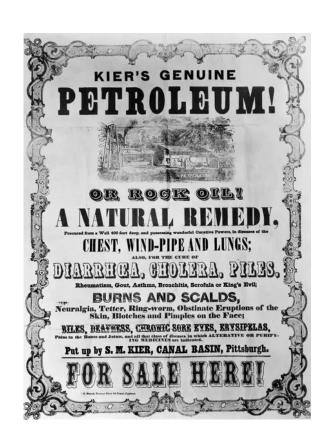
45Q: A Comparison of Storage Methodologies

Dr. Steven Carpenter, Director


University of Wyoming

September 4, 2019

Happy Belated 160th Birthday Oil Industry

8/50/1859 336/10,400

And now there are four (4)...CO₂ Storage Methodologies

1. EPA GHGRT Subpart RR

2.ISO:27916 CO₂-EOR

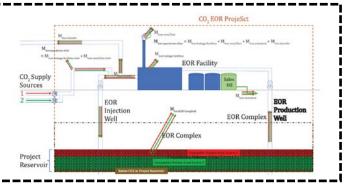
3. California LCFS & CCS Protocol CALIFORNIA

4. SPE CO₂ SRMS

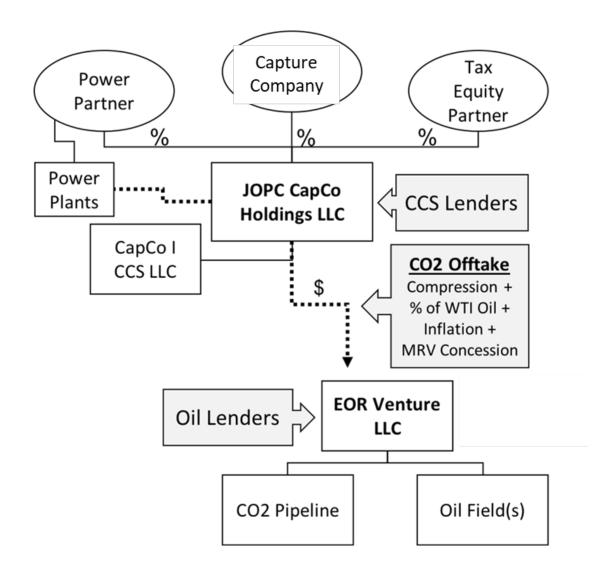
SESSION 19: CARBON MANAGEMENT –II: 14:10 - 14:30 A Comparison of CO₂ Storage Quantification Methodologies

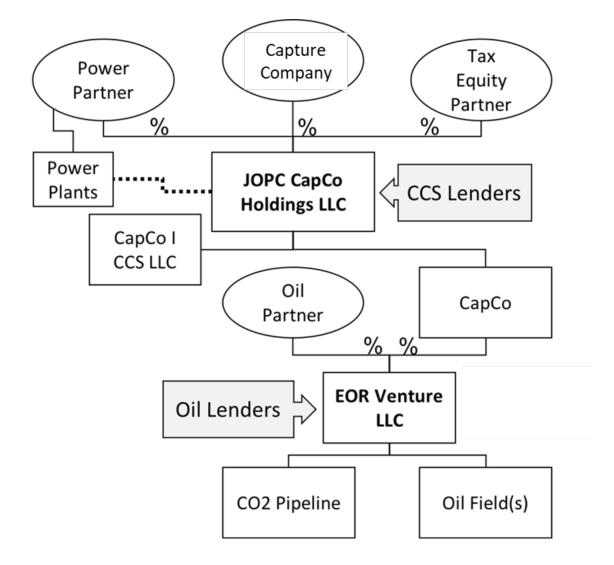
And now there are four (4)...CO₂ Storage Methodologies

Phase of project	GHGRP Subpart RR	ISO 27916	CARB CCS PROTOCOL	
Authority	EPA	Voluntary	CARB	
Reporting	Report the annual mass (Accounting)	Quantify & document the annual mass	Quantify & document the annual mass	
Well construction & corrective action	Class II	Class II	Class II	
Monitoring, reporting, and verification (MRV) plan	5 components	5 components	Several components + 100 years of Post Injection Monitoring	
Records retention	3 years after closure	duration of the project & shared with regulator	10 years after closure	
Monitoring technologies	Detailed requirements of measurement devices, may use standards	Best available technology & standard industry practices	Long list of MUST includes	
Verification	EPA	Self-certification, regulatory authority certification, or 3rd party certification	CARB specifies verification team	
P & A	Class II	Class II	Pursuant to Executive Officer & Sequestration Site Certification	
Post-injection site care and site closure (PISC)	No PISC	No PISC	<2 years P&A all wells, <15 years prove plume is stable, ≤100 years monitor for leaks	

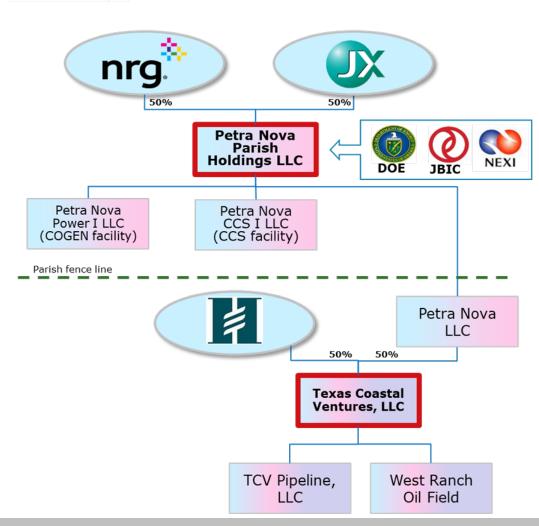

In order to get the credit with 45Q...

- 1. Must "begin construction" by December 31, 2023
 - What is the definition of "beginning"?
 - This provides uncertainty for investors to move forward with financing
- 2. The credit must be transferable
 - From the CAPCO to STORCO
 - Must have a tax liability for there to be any value


• What is safe and what is secure?



Transferable Credits



Transferable Credits

Commercial Structure

Our Partners

JX Holdings is a leading integrated energy, resources, and materials company

NRG Energy, Inc. is the largest independent power company in the US

Hilcorp Energy is one of the largest privately-held oil and natural gas E&P companies in the US

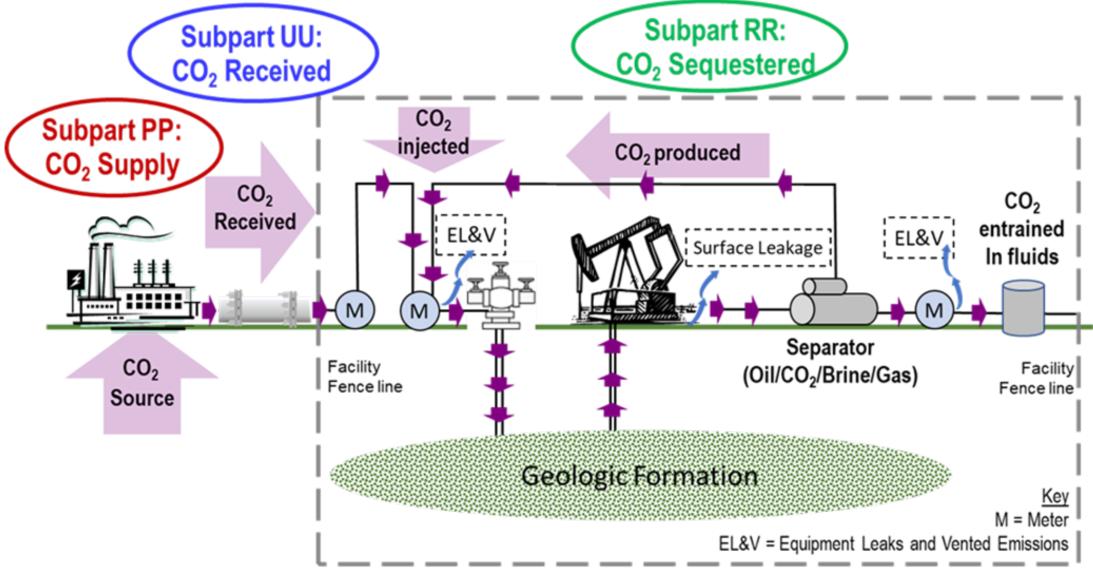
JBIC and NEXI combined on a \$250 million project loan.

US DOE awarded \$190 MM grant funded through Clean Coal Power Initiative

Safe & Secure Storage

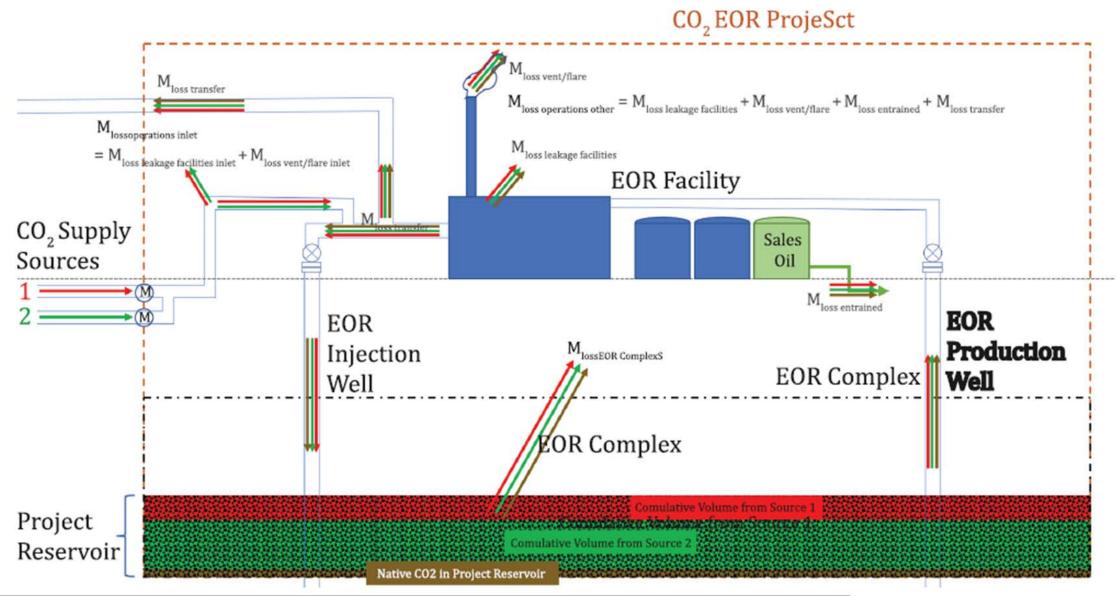
Saline tonnes this year	Departri Internal Name(s	Carbon Oxide Sequestration Credit ► Attach to your tax return. ► Go to www.irs.gov/Form8933 for the latest information. Qualified carbon oxide captured using carbon capture equipment originally placed in service at a qualified facility before February 9, 2018, disposed of in secure geological storage and not used as a tertiary injectant in a qualified enhanced oil or natural gas recovery project, nor utilized in a way described in section 45Q(f)(5). Metric tons captured and disposed of	Identif	OMB No. 1545-0123 2018 Attachment Sequence No. 165 ying number
	2a b	Qualified carbon oxide captured using carbon capture equipment originally placed in service at a qualified facility before February 9, 2018, disposed of in secure geological storage and used as a tertiary injectant in a qualified enhanced oil or natural gas recovery project, or utilized in a way described in section 45Q(f)(5). Metric tons captured and used	2c	EOR tonnes this year
Saline tonnes <12 yrs	b	Qualified carbon oxide captured using carbon capture equipment originally placed in service at a qualified facility on or after February 9, 2018, during the 12-year period beginning on the date the equipment was originally placed in service, disposed of in secure geological storage, and not used as a tertiary injectant in a qualified enhanced oil or natural gas recovery project, nor utilized as described in section 45Q(f)(5). Metric tons captured and disposed of Section 45Q(a)(3) applicable dollar amount (see instructions) Multiply line 3a by line 3b.	3c	
		Qualified carbon oxide captured using carbon capture equipment originally placed in service at a qualified facility on or after February 9, 2018, during the 12-year period beginning on the date the equipment was originally placed in service, disposed of in secure geological storage, and used as a tertiary injectant in a qualified enhanced oil or natural gas recovery project, or used as described in section 45Q(f)(5). Metric tons captured and disposed of Section 45Q(a)(4) applicable dollar amount (see instructions) Multiply line 4a by line 4b.	4c	EOR tonnes < 12 yrs

Secure Geological Storage


This includes storage at deep saline formations, oil and gas reservoirs, and unminable coal seams under such conditions as the IRS may determine under regulations.

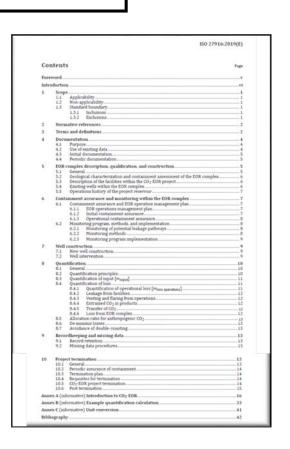
After 2010, the following apply.

- Secure geological storage requires approval by the U.S. Environmental Protection Agency (EPA) of a Monitor, Report and Verify Plan (MRV Plan) submitted by the operator of the storage facility or tertiary injection project.
- The annual amount of carbon oxide claimed for the credit must be reconciled with amounts reported to the EPA under its Greenhouse Gas Reporting Program, subpart RR.


EPA GHG Reporting Tool Mass Balance

JAF2019_058.PPT

ISO 27916-2019 Mass Balance



ISO:27916 Table of Contents

- 1. Scope
- 2. Normative references

ISO Required Boilerplate

- 3. Terms and definitions
- 4. Documentation
- 5. EOR complex description, qualification, & construction
- 6. Containment assurance & monitoring within the EOR complex
- 7. Well construction
- 8. Quantification
- 9. Recordkeeping
- 10. Project termination

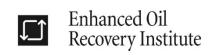
Section 4: Documentation

 Intended to facilitate documentation of the safe, long-term containment, and the quantification of associated storage of CO₂ in EOR operations

• Initial documentation to include:

- storage complex & site description
- containment assurance
- monitoring plan
- quantification method
- assessment of CO₂ injection history

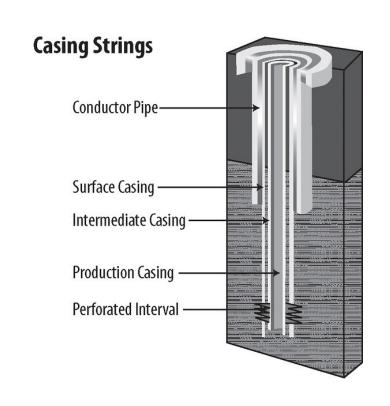
• Periodic documentation to include:


- quantity of CO₂ stored
- back up data
- quantification notes
- verification statement

Section 5: EOR complex description

Designed to *demonstrate* that the EOR complex *is adequate* to provide *safe, long-term containment of CO*₂ and shall include site-specific and other information pertaining to:

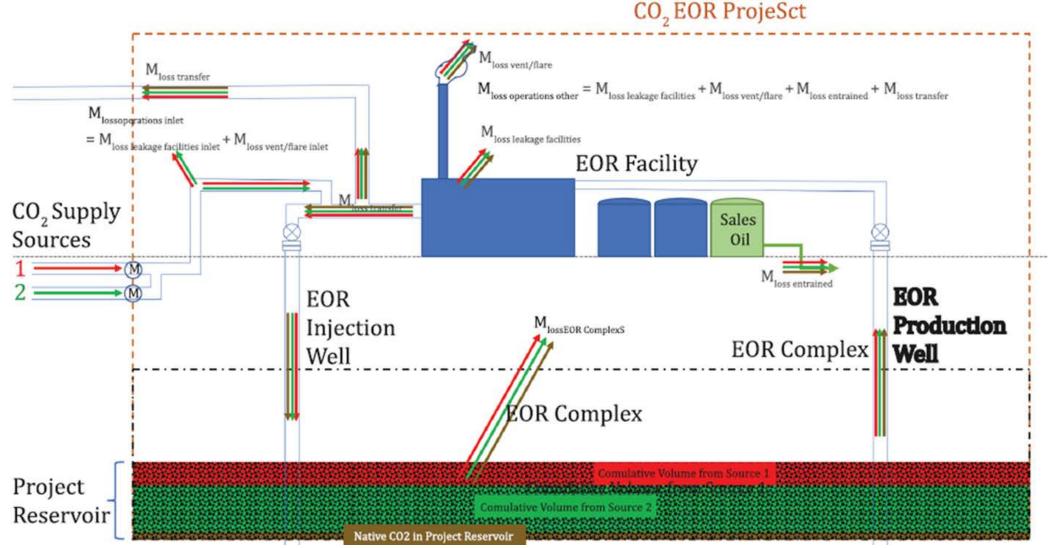
- a) geologic characterization of the EOR complex
- b) a description of the facilities within the CO₂-EOR project
- c) a description of all wells & engineered features of the project
- d) the operations history of the project reservoir


Section 6: Containment Assurance

- An initial assessment of potential leakage pathways to provide assurance that operations consistent with containment of CO₂ that may include:
 - a) unexpected changes in project performance that have potential to influence storage
 - b) addition or abandonment of injection zones
 - c) change to the **areal extent** of the project reservoir
 - d) addition or abandonment of wells
 - e) anomalous change of injection-withdrawal ratio
 - f) development of reservoirs which are located above or below the project reservoir
 - g) discovery of CO₂ beyond the boundary of the CO₂-EOR complex
- A monitoring plan including plans to monitor for leakage and methods

Section 7: Well Construction

Sufficient information to demonstrate that *new* & *existing* wells & *well interventions*, are:


- ✓ Designed...
- ✓ Constructed...
- ✓ Tested...
 - ...to provide safe,
 - ...long-term containment of CO₂

Section 8: Quantification

Mass balance approach: CO_2 stored = CO_2 input less CO_2 lost from operations & subsurface & entrained

Section 10: Project Termination

- Allows for operation beyond period of reporting storage
- Requires a *termination plan*
- 5 *criteria for termination* including:
 - 1. Absence of leakage
 - 2. Compliance with decommissioning rules
 - 3. Demonstration of containment of CO₂ in the EOR complex
 - 4. Risks managed throughout the project life
 - 5. Facilities removed/retained as necessary by lease or contract

Regulations vs. Standards: LANGUAGE

- Normative (Required) = Shall / Must
- Informative (Suggested) = Should / May / Can
- "shall" or "must" only option given
- "should" preferred option over several
- "may" an option given
- "can" no option given

EPA Subpart RR vs. ISO 27916

	EPA GHGRT Subpart RR	ISO 27916 (CO ₂ -EOR)	
	(a) Mass of CO ₂ received	Mass received	
	(b) Mass of CO ₂ injected into the subsurface	Mass input (received + native)	
	(c) Mass of CO ₂ produced (i.e., mixed with produced oil, gas, or other fluids)	Mass loss entrained	
	(d) Mass of CO ₂ emitted by surface leakage	Mass loss operations (may be called fugitive)	
		Mass loss vent/flare	
	(e) Mass of CO ₂ equipment leakage and vented CO ₂ emissions		
Mass Balance	from surface equipment located between the injection flow meter and the injection wellhead	Mass loss leakage facilities (may be called fugitive)	
(CO ₂)	(f) Mass of CO ₂ equipment leakage and vented CO ₂ emissions from surface equipment located between the production flow meter and the production wellhead	Mass loss leakage facilities (may be called fugitive)	
		Mass loss transfer	
	(g) Mass of CO ₂ sequestered in subsurface geologic formations	Mass stored (annual)	
		Mass loss EOR complex	
	(h) Cumulative mass of CO ₂ reported as sequestered in		
	subsurface geologic formations in all years since the facility	Mass stored (cumulative)	
	became subject to reporting requirements under this subpart		
		Mass native (non-anthropogenic)	

EPA Subpart RR vs. ISO 27916

	EPA GHGRT Subpart RR	ISO 27916 (CO ₂ -EOR)		
	May request to discontinue reporting at any time	In addition to any existing permitting, regulatory, and contractual framework by the authority		
	Approved by the Administtrator	Only when:		
	a demonstration that current monitoring and model(s) show that the injected CO2 stream is not expected to migrate in the future in a manner likely to result in surface leakage.	a) the absence of detectable leakage (see 6.2) or open conduits to the surface out of the EOR complex, and that the injected CO2 is, at the time of project termination, safely contained ;		
		b) compliance with all well decommissioning and plugging		
		requirements for all CO ₂ -EOR project wells [see 7.2 g)], that wells do		
		not allow fluid movement out of the EOR complex, and that the CO ₂ -		
Project		EOR project wells do not pose a leakage risk		
Termination		c) the injected CO2 is safely contained with sufficient documentation		
		of the characteristics of the EOR complex and operational history of		
		the CO2-EOR project to demonstrate long-term stability and		
		predictability of the associated storage;		
		d) risks and uncertainties relating to the associated storage of CO ₂		
		were managed throughout the EOR project life; and		
		e) facilities and ancillary equipment associated with the CO2-EOR		
		project have been removed, except those required to be retained by		
		lease or contractual obligations, integral to other operations, or		
		intended for different uses which may be left in place with approval of		
		the authority.		

Next Steps for Adoption/Use of ISO:27916 in US

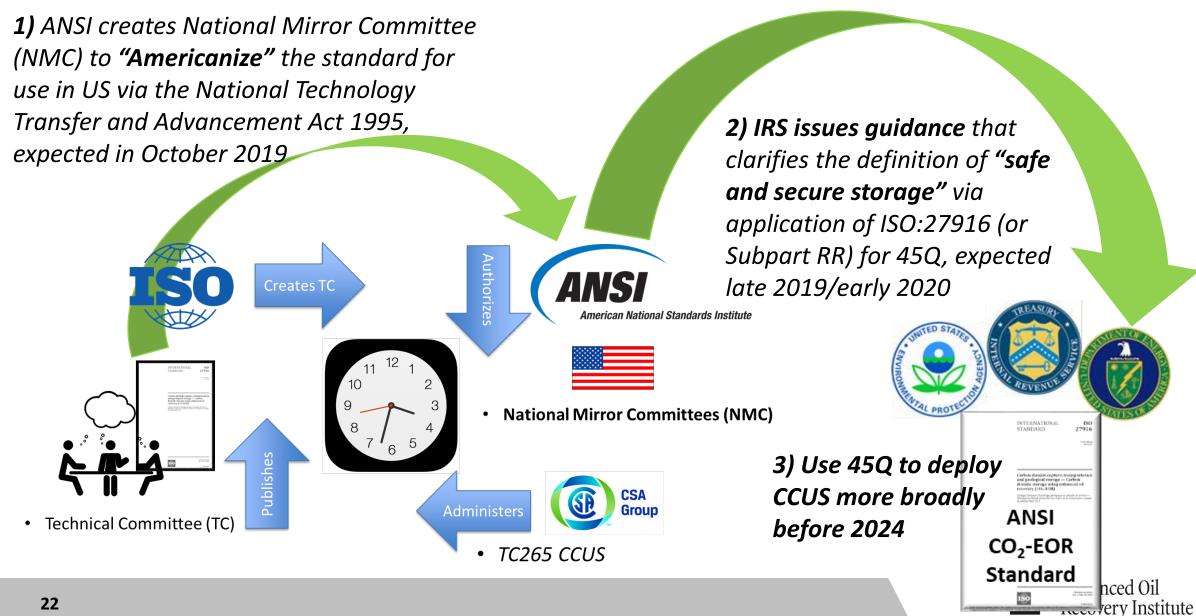
Authorizes

- Secretariats
- Technical Advisory Groups (TAG)
- National Mirror Committees (NMC)

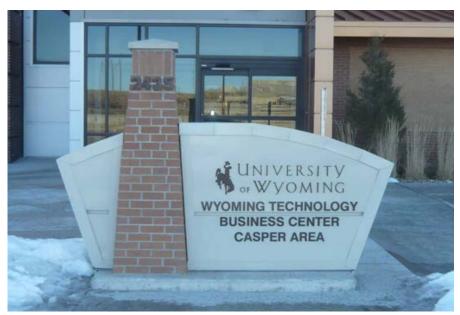
Administers

- International Experts
- Liaisons (NGOs)
- Technical Advisory Group (TAG)
- National Mirror Committee (NMC)

- TC82 Mining
- · TC265 CCUS
- TC298 Rare Earth Elements



Next Steps for Adoption/Use of ISO:27916 in US


Questions, Comments, Concerns

Dr. Steven Carpenter, Director

steven.carpenter@uwyo.edu

O: 307-315-6442

C: 513-460-0360

