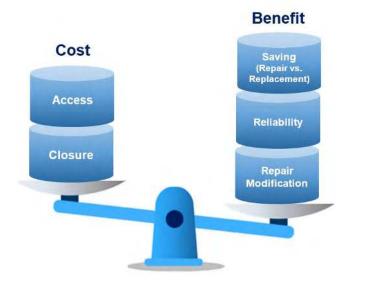


Improving Bridge Assessment through integration on Visual Inspection and Non-destruction **Evaluation Data**

PITT IRISE

CENTER FOR IMPACTFUL RESILIENT **INFRASTRUCTURE SCIENCE & ENGINEERING**

Background


The US Federal Reserve Board:

- Reduction of the national GDP due to failure of civil infrastructure
- > The America's aging infrastructure

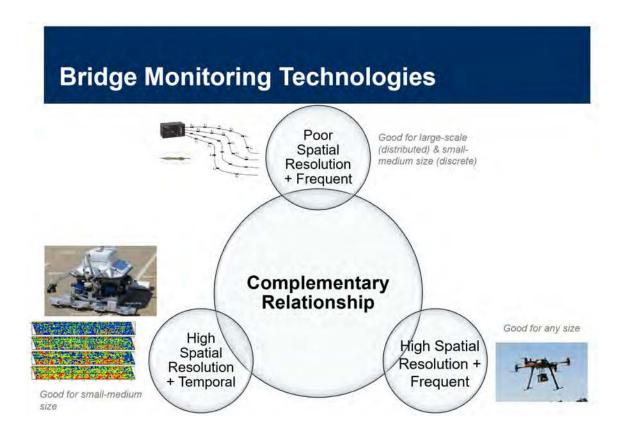
```
D+
```

1%

Cost-effective, continuous, and user-centered assessment and safety evaluation of civil infrastructure are on demand

PITT IRISE

Spring Transportation Forum | Improving Bridge Assessment via Integrating Visual Inspection and NDE Data 3


Research Problem

Large costs and relatively long intervals between inspections for large structures

Current assessment approaches are generally subjective in nature and provide only qualitative data reflective of surface or near-surface condition

Huge gap exists in:

- Effective approaches to fuse the collected massive NDE data
- Reliability/consistency/implementation of the UAVs over the service life of bridges

Project Objectives

Establish a framework capable of leveraging the data provided by emerging UAV-based and NDE techniques

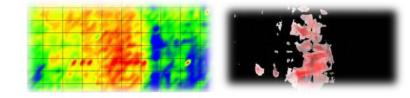
- Addressing the principal challenges associated with studying the service life of bridge structures:
 - Long-time scales (which requires accelerated aging)
 - The diverse outputs related to bridge condition (in terms of data collected through UAV, NDE, and visual inspection)
- Identifying the synergies among bridge degradation, remaining service life, and the results taken from the multimodal sensing technologies (NDE, and UAV-based)

Development of Automated Vision-Based Inspection > Collection of high-resolution and high-temporal data from the **BEAST** facility

- Advanced data interpretation for UAV data
- UAV data collection strategy

Improvement of Multi-resource NDE Data Interpretation

- > Individual NDE data interpretation
- > Multi-resource NDE data fusion


Deliverables:

- Final Report
- Technical Articles
- Technical Events (TRB, NEBPP)

Project Tasks/Deliverables

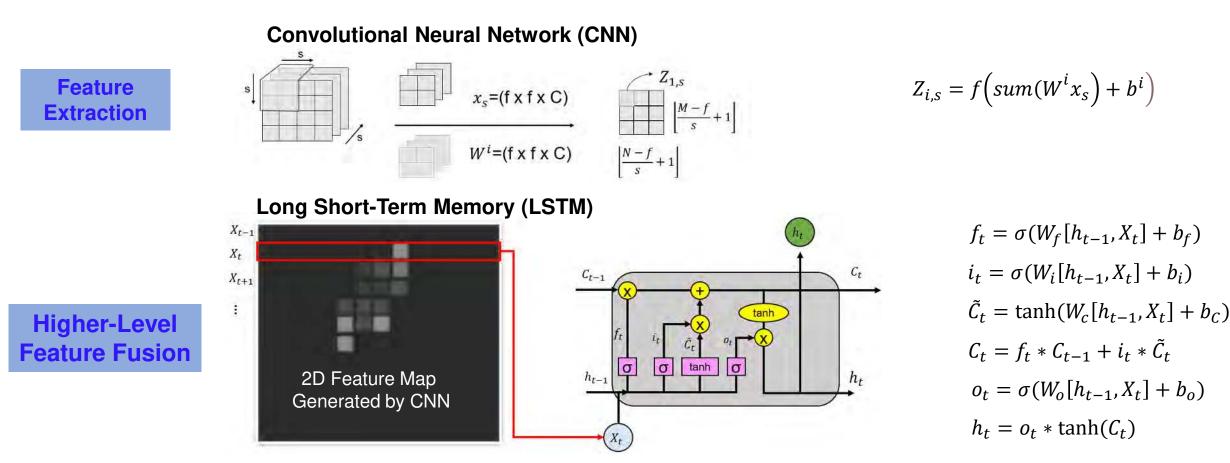
Tasks:

PITT IRISE

The **BEAST**

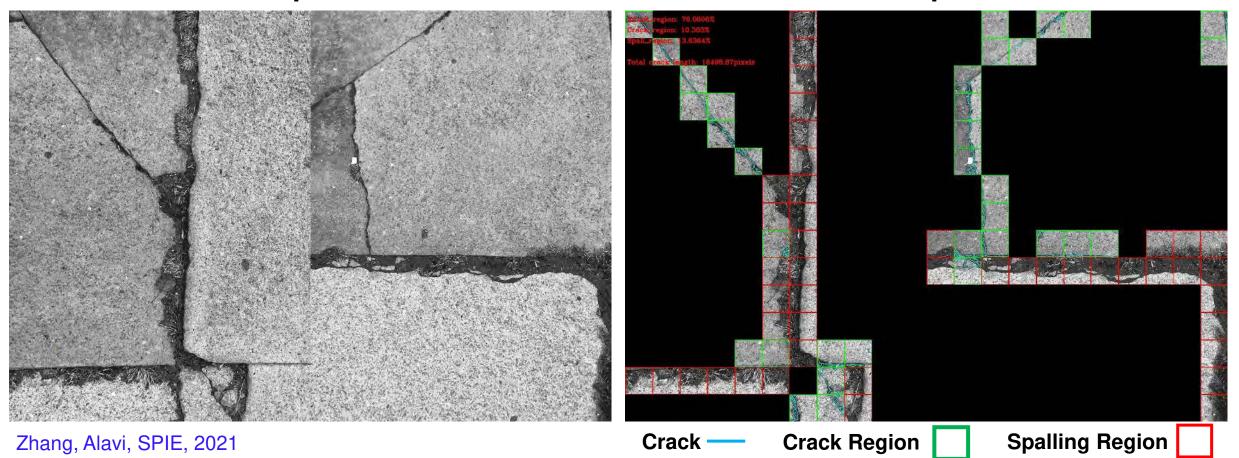
PITT IRISE

Bridge Evaluation and Accelerated Structural Testing Lab (BEAST):


- Full-scale Bridge Systems
- Accelerated Deterioration
- Speed up 30 times
- > NDE Data Collected from the BEAST:
 - Electrical Resistance (ER)
 - Ultrasonic Surface Wave (USW)
 - Ground Penetrating Radar (GPR)
 - Half Cell Potential (HCP)

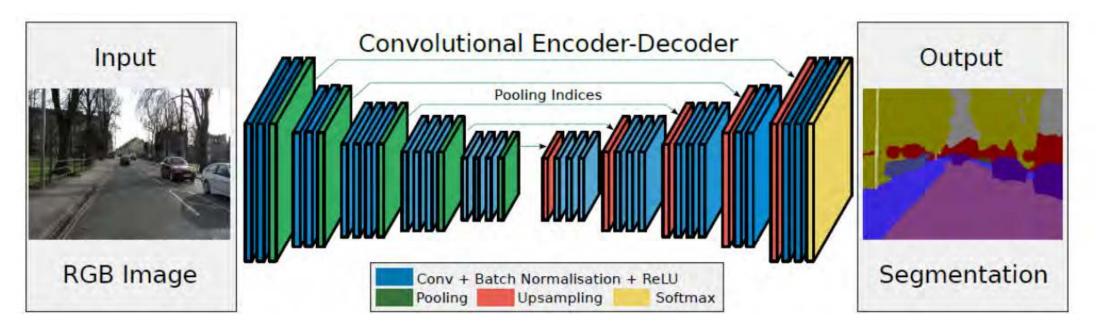
- > UAV Data Collected from the BEAST:
 - HD Images (UAV/Hand-held)
 - Infrared Images (UAV/Hand-held)

Deep learning can detect and quantify bridge deck surface and subsurface defects!


PITT IRISE

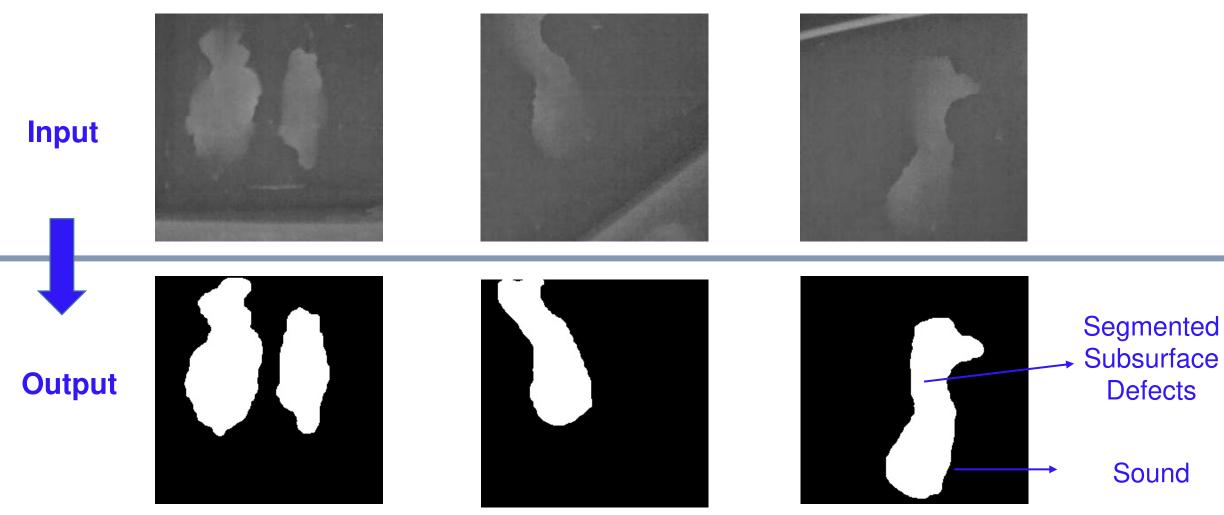
Zhang, Barri, Babanajad et al, Engineering, 2020

Automated Vision-Based Inspection


Input

PITT IRISE

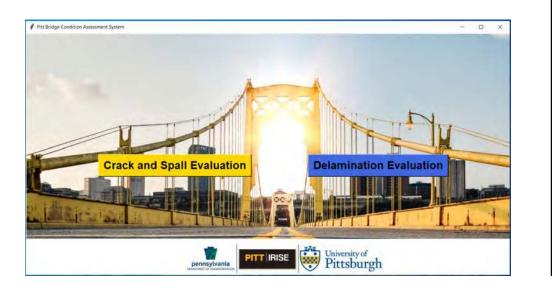
Output


Subsurface Damage Detection (Encoder-Decoder Segmentation Network)

DeepLabV3+Xception backbone

- DeepLab: Atrous Spatial Pyramid Pooling (ASPP)
- > Xception: With Depthwise Separable Convolution

Automated Vision-Based Inspection

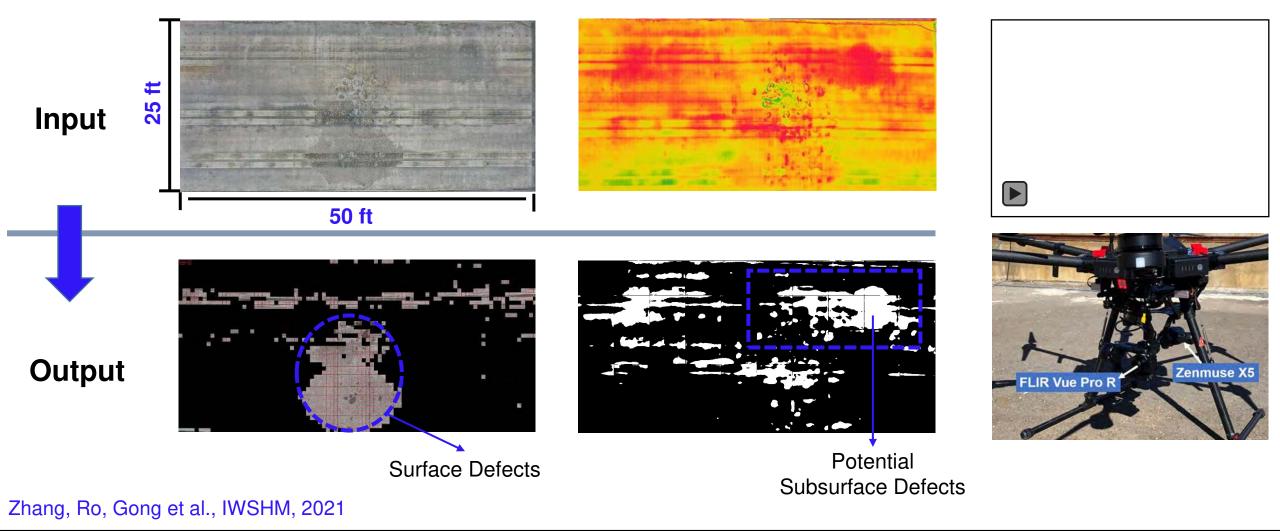


PITT IRISE

Zhang, Barri, Wan, IBC, 2021

Tool Development for Vision-based Evaluation

An easy-to-use tool is developed based on the presented methodologies for surface and subsurface damage evaluation


Defect detection speed is less than 3 sec/ft² of the deck

PITT IRISE

Zhang, Alavi, Babanajad et al., PennDOT Report No. FHWA-PA-2021-012-IRISE WO 01, 2021

Automated Vision-Based Inspection

Implementation and Validation on BEAST

PITT IRISE

UAV Data Collection Strategy

Challenges: > IR image quality can be **affected** by **many factors**

> Investigation in UAV IR data **collection strategy** is necessary

PITT IRISE

	Collection #1	Collection #2	Collection #3		
Time	Morning (10 am - noon)	Afternoon (3-5 pm)	Evening		
Distance from Deck (feet)*	30/40/50/60/70/80	30/40/50/60/70/80	30/40/50/60/70/80		
Camera angles	Vertical/Oblique	Vertical/Oblique	Vertical/Oblique		
Overlap	75%	75%	75%		
Deck condition	Dry	Dry	Dry		
HD Images	Same settin	Same setting as IR image (only before sunset)			

The temperature changes were 11.1°C at the closest climatological substation to the BEAST facility on April 28th, 2021 Angle Factor

afternoon

1 pm, 87°F, 0mph from N

6:30 pm, 79°F, 8 mph from SW

Zhang, Ro, Gong et al., IWSHM, 2021

Time

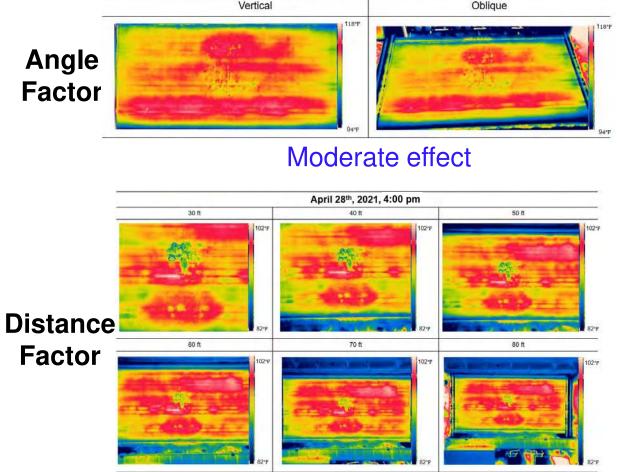
Factor

Spring Transportation Forum | Improving Bridge Assessment via Integrating Visual Inspection and NDE Data | 14

Automated Vision-Based Inspection

> The necessary temperature change for IRT under

April 28th, 2021, 70ft


Significant effect

passive conditions is at least 8.2°C.

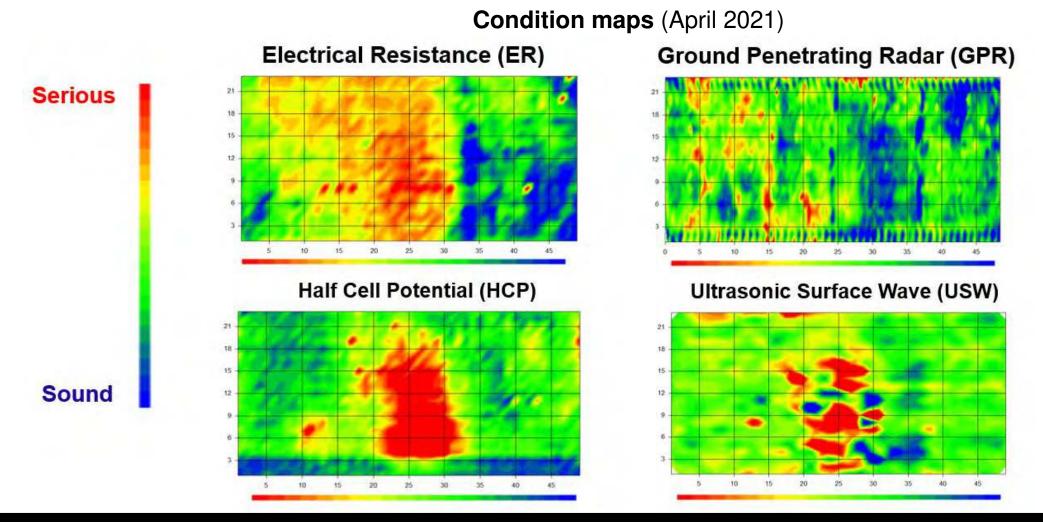
morning

11 am, 68°F, 5mph from N

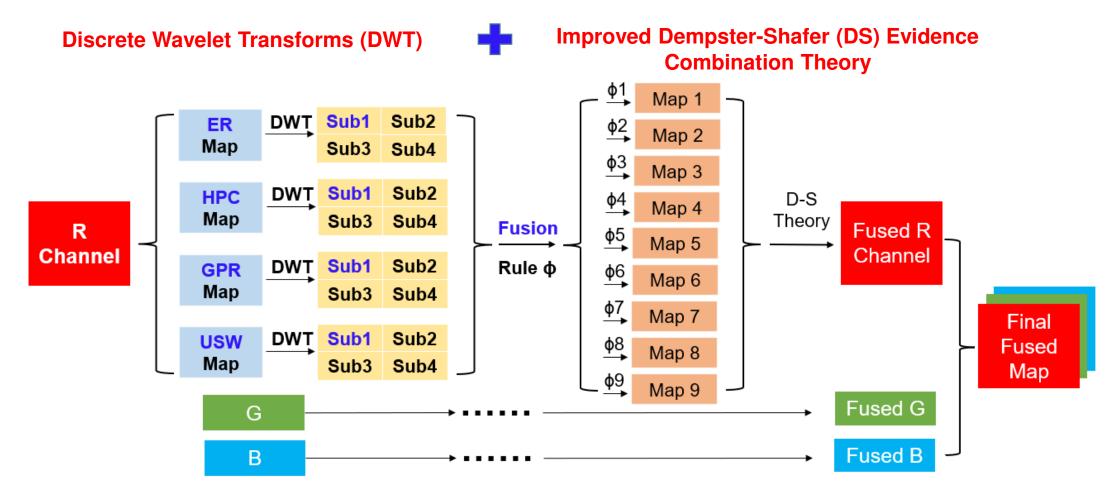
4 pm, 88°F, 10mph from SE

No significant effect

April 28th, 2021, 80 ft, 5:30 pm

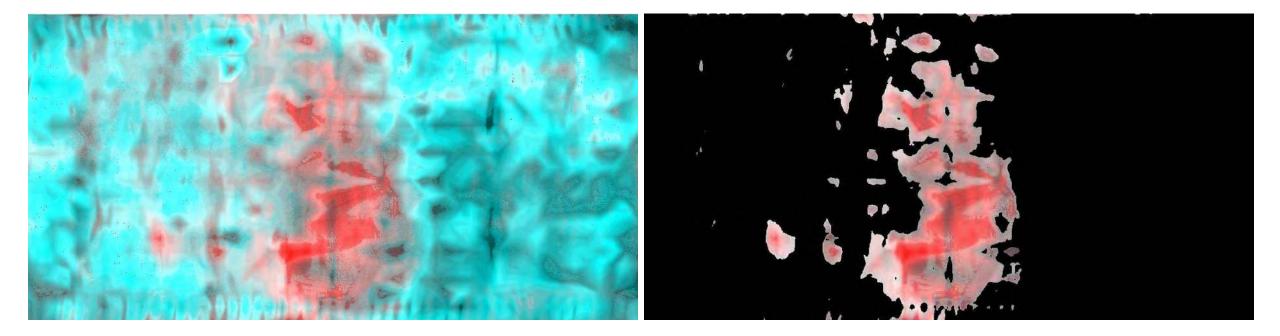

PITT IRISE

Multi-resource Data Collected from the BEAST

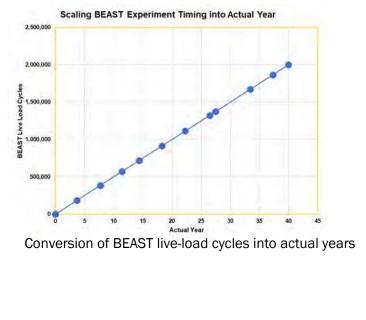

10 rounds of NDE data collection have been conducted

Data Collection Date	Cumulative Live Load Cycles	Cumulative Freeze- thaw Cycles	Deck Condition Rating (Visual Inspection)	NDE Data Collection (IE/ USW/ER/GPR/HCP)
11/2019	185000	8	-	Х
01/2020	385000	24	-	Х
02/2020	572000	35	Х	Х
06/2020	717000	39	-	Х
11/2020	914000	48	Х	Х
12/2020	1114000	56	-	Х
03/2021	1323270	70	Х	Х
04/2021	1374876	73	Х	Х
06/2021	1671506	85	Х	Х
07/2021	1866006	85	Х	Х

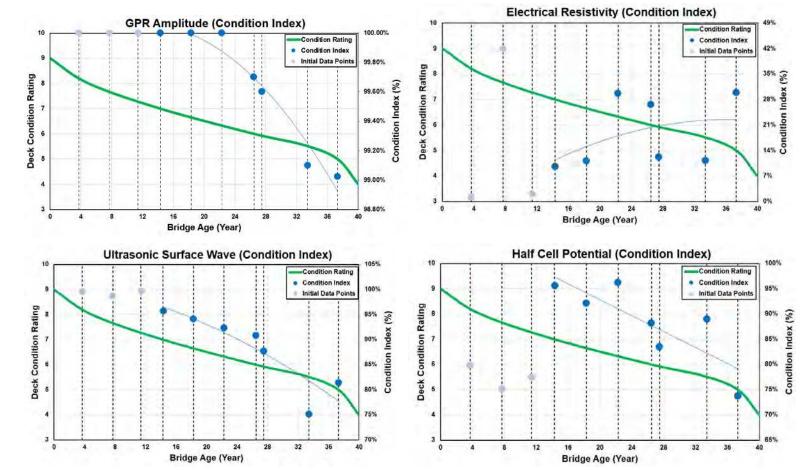
Statistical Analysis for Individual NDE Data


Multi-resource NDE Data Fusion

Zhang, Babanajad, Ro et al., Automation in Construction, 2022

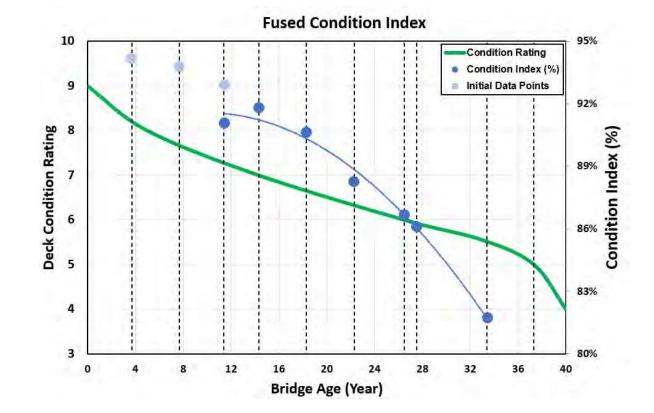

Multi-resource NDE Data Fusion

Since red color means high probability of existing damages, red parts are segmented out



Zhang, Babanajad, Ro et al., Automation in Construction, 2022

Comparison Between Individual NDE Results and Fused Results



Individual NDE result does NOT match the trend well

Zhang, Babanajad, Ro et al., Automation in Construction, 2022

Comparison Between Individual NDE Results and Fused Results

Individual NDE result does match the trend well

Zhang, Babanajad, Ro et al., Automation in Construction, 2022

Summary

PITT IRISE

> Automated Vision-based Evaluation

- Surface and subsurface defects detection methodologies
- > An easy-to-use tool for DOTs and large–scale implementation
- UAV data collection strategy

Multi-resource NDE Data Interpretation

- Individual analysis of NDE data collected from BEAST
- Multi-resource NDE data fusion method
- Comparison of individual NDE results and fused results

Reference

The project is sponsored by Pennsylvania Department of Transportation.

Project Panel

Tom Macioce, PennDOT Keith Cornelius, PennDOT Rich Runyen, PennDOT Brian Rampulla, PennDOT Shelley Scott, PennDOT

Awards by Gloria Zhang:

Best Paper Award, James D. Cooper Student Paper Competition, International Bridge Conference (IBC)

Best Poster Award, Advancing Research through Computing (ARC) Competition

Best Paper Award, Association for Bridge Construction and Design (ABCD)

Jonathan Buck, FHWA Mike Burdelsky, Allegheny County Mike Pichura, MBI

PITT IRISE

RUTGERS Center for Advanced Infrastructure and Transportation

Reference

PITT IRISE

- 1. Zhang Q., Babanajad S.B., Ro S. H., Braley J., Alavi A.H., "Bridge deck assessment via multi-resource nondestructive evaluation data fusion," Automation in Construction, In review, 2022.
- 2. Zhang Q., Barri K., Babanajad S. K., Alavi A. H., "Real-time detection of cracks on concrete bridge decks using deep learning in frequency domain," Engineering, 2020.
- 3. Zhang Q., Babanajad S. K., Moon F., Alavi A. H., "Automated detection and quantification of cracks and spalls in concrete bridge decks using deep learning", 100th TRB Annual Meeting, 2021
- 4. Zhang Q., Alavi A. H., "Automated two-stage approach for detection and quantification of surface defects in concrete bridge decks", Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XV, 2021
- 5. Zhang Q., Barri K., Wan Z, "A deep learning-based autonomous system for detection and quantification of delamination on concrete bridge decks", International Bridge Conference, In press, 2021.
- 6. Zhang Q., Ro S.H., Gong J., Moon F., Alavi A.H., "Recent advances in bridge condition assessment using unmanned aerial vehicles", 13th International Workshop on Structural Health Monitoring, Stanford, California, 2021.
- 7. Zhang Q., Alavi A., Babanajad S., Moon F., Braley J., Gucunski N., "Improving Bridge Assessment through the Integration of Conventional Visual Inspection, Non-Destructive Evaluation, and Structural Health Monitoring Data," Pennsylvania State Department of Transportation, Report NO. FHWA-PA-2021-012-IRISE WO 01, 2021.

University of Pittsburgh

Swanson School of Engineering

Questions?

PennDOT (p 118)

Condition Rating for Concrete Bridge Deck Evaluation:

	Rating	Condition Indicators							
Category Classification		Deck Area		Flortsingl	D	Chloride Content			
		Visible Spalls	Delam- ination	Electrical Potential	Deck Area	(#/CY)	Deck Area		
Category #3	9	none	none	0.0	none	0	none		
Light	8	none	none	0.0 < E.P.< 0.35	none	0 < C.C.<1	none		
Deterioration	7	none	< 2%	0.35 < E.P.< 0.45	≤ %5	0 < C.C.<2	none		
Category #2 Moderate Deterioration	6 5	<pre>< 2% spalls or sum of all deteriorated and/or contaminated deck concrete (≥2#/C.Y.Cl) < 20% < 5% spalls or sum of all deteriorated and/or contaminated deck concrete 20% to 40%</pre>							
Category #1 Extensive Deterioration	4 3	 > 5% spalls or sum of all deteriorated and/or contaminated deck concrete 40% to 60% > 5% spalls or sum of all deteriorated and/or contaminated deck concrete > 60% 							
Structurally	2	Deck structural capacity grossly inadequate							
Inadequate	1	Deck has failed completely - Repairable by replacement only							
Deck	0	Holes in deck - Danger of other sections of deck failing							

Notes: Rating 9 - No deck cracking exists. Rating 8 - Some minor deck cracking is evident

To achieve better visualization, a 3D model of the BEAST has been developed as follows:

- Application:
 - □ Virtual bridge inspection
 - □ Bridge inspection training
 - Better post data interpretation and visualization