

Integrating Additive Manufacturing with Accelerated Bridge Construction Techniques

Amir H. Alavi, PhD IRISE Annual Meeting May 23rd, 2024

The Research Problem

Modular forms of bridge construction have been of continued interest in prefabricated bridge elements and systems (**PBES**)

The Limitations:

- High cost for developing modular forms
- Time consuming and labor intensive
- Construction safety concerns
- Limited customizability

Precast composite parapets

The Needs:

Increase the construction quality of PBES

Reduce their construction time and labor cost

Enhance the safety and reliability

Minimize the environmental footprint of the **PBES** fabrication plants

Produce structural elements with optimized topologies

Enable in-situ repair of existing **ABC** elements via customizable design

Objectives:

- Explore the feasibility of integrating additive manufacturing with ABC techniques in Pennsylvania
- Identifying, fabricating and mechanical testing of 3D printable prefabricated bridge elements currently used in ABC projects

Tasks and Deliverables:

- > Task A: Review of the stat-of-the-art of 3D concrete printing research
- > Task B: Identifying optimal 3DCP reinforcement
- Task C: 3D printing of prefabricated elements in ABC systems
- Task D: Development of recommendations
- ➤ Task E: Final report

ttsburgh

University of

Literature Review

Potential Reinforcement Strategies:

Placing steel reinforcement horizontally between 3d-printed concrete layers

Concrete floor slabs with add-on-printed reinforced ribs

Placing vertical reinforcement in 3D printed formwork

Post-tensioning of steel reinforcement placed in 3D printed conduits

Mesh insertion and embedment using the custom-designed 3D printing nozzle

Concrete Beam 3D Printing

Without Reinforcement

Printed Formwork

With Reinforcement

Printed Formwork with Reinforcement

Printed Entire Sample with Reinforcement

Concrete Beam 3D Printing

Without Reinforcement

Printed Studs Formwork

With Reinforcement

Printed Studs Formwork with Reinforcement

Sikacrete^R -752 3D micro-concrete

	1 st day	~2,900 psi
Compressive strength ¹	7 th day	~5800 psi
	28 th day	~7,250 psi
Flexural strength ²	~1,000 psi	
Water penetration under pressure ³	~0.8 inch	
Service temperature	Under 212 °F	

1) Tested at +77 °F, w/c=17% (1.10-gallon water per 55 lb bag) (ASTM C109)

2) Tested at +77 °F, w/c=17% (1.10-gallon water per 55 lb bag) (ASTM C348)

3) Tested at +77 °F, w/c=17% (1.10-gallon water per 55 lb bag)

Printed Entire Sample with Staples

Concrete Beam Tests

Concrete Beam Tests

University of Pittsburgh

Cast with Reinforcement

Printed Formwork with Reinforcement

Concrete Beam Test Results

Concrete Beam Test Results

Casted-Plain	3DP-Walls-Plain	3DP-Stud-Plain	Fully Printed-Plain	
Beam Width 6 in	Beam Width 8 in	Beam Width 8 in	Beam Width 8 in	
Beam Height 6 in	Beam Height 6 in	Beam Height 7 in	Beam Height 6 in	
Max Load 5.17 kips	Max Load 4.20 kips	Max Load 4.82 kips	Max Load 8.26 kips	
Max Stress 646.33 psi	Max Stress 393.45 psi	Max Stress 331.69 psi	Max Stress 774.31 psi	
		*		
Casted-Rebar	3DP Wall-Rebar	BDP-Stud-Rebar Doom Width	Fully Printed-Rebar	Fully Printed- Staple
Beam Width 6 in	Beam Width 9.5 in	Beam Width 7 in	Beam Width 10 in	Beam Width 8 in
Beam Height 6 in	Beam Height 6 in	Beam Height 7 in	Beam Height 7 in	Beam Height 6 in
Aax Load 13.64 kips	Max Load 19.63 kips	Max Load 29.46 kips	Max Load 34.06 kips	Max Load 5.07 kips
fax Stress 1704.90 psi	Max Stress 1549.43 psi	Max Stress 2319.04 psi	Max Stress 1876.64 psi	Max Stress 474.94 psi
		- Anne -		A A
				2

Bridge Component Selection

Main Components:

- > Abutment
- ➢ Girder
- Bent Beam
- > Piers

Final Decision: Pier cap

Pier Cap Design Details

Micro-concrete

Compressive Strength	1 day	7 days	28 days
	~2900 psi	~5800 psi	~7250 psi
Flexural Strength	~1000 psi (28 days, 77 °F, 17% w/c ratio)		

Standard Concrete

Compressive Strength	28 days
	4000-10000 psi
Flexural Strength	800~1200 psi

Pier Cap Design and 3D Printing

Conventionally Cast Reinforced Pier Cap

3DCP of Pier Cap Formwork

Pier Cap Test Results

0.04

Pier Cap Test Results

- Feasibility of using additive manufacturing for developing PBES for ABC
- 3DCP beams without refinement demonstrated acceptable strength results compared to the conventionally cast samples
- Reinforced 3D printing formwork with studs showed higher strength than other samples
- Conventionally cast pier cap provided a similar strength to the cap with reinforced 3DCP formwork with studs
- The 3D printed pier cap exhibited higher stiffness

Further Considerations

- Exploring the stapling reinforcement method (e.g. understanding how overlaps influence strength)
- Investigating the integration of smart technologies, such as sensors and monitoring systems, into 3DCP prefabricated elements
- Material discrepancies: The divergence in materials between
 3DCP and traditional concrete introduces a challenge
- Durability and long-term performance

Acknowledgement

Project Panel

Jason Zang, PennDOT Nick Shrawder, PennDOT Jonathan Buck, FHWA John Boyer, Pennsylvania Turnpike Richard Connors, Allegheny County & Shelley Scott, PennDOT

Graduate students

Undergraduate students

Wendy Lu Gloria Zhang Aron Griffin Kaveh Barri Hao Yu

Callum Grealy Ariel Holstein Quinn Aker Bailey McCausland

May 10, 2022

PITT CIVILE GRADUATE RECEIVES GEM FELLOWSHIP

Aron Griffin (BSCE '22) will pursue work with Meta and CMU

Thank you

Impactful Resilient Infrastructure Science and Engineering (IRISE) https://www.engineering.pitt.edu/subsites/consortiums/irise/

Intelligent Structures and Architected Materials Research and Testing (ISMART) Laboratory

ISMART https://pitt.edu/~alavi/

Swanson School of Engineering

ENGINEERING EXCELLENCE SINCE 1846

