

Swanson School of Engineering

Three-Dimensional Micro-Mechanical Characterization Concrete Vibration

PITT

Alessandro Fascetti, Ph.D. Julie M. Vandenbossche, Ph.D., P.E. Xiangdong Yan Megan Darnell

IRISE Annual Meeting May 23rd, 2024

Vibration Array

Vibrator element

Resources: 1. GOMACO GP3; 2. GP3 Slipform Paver; 3. Vibrating and bar insertion element;

The Problem

Core Core On Between Vibrator Vibrators

University of Pittsburgh

ON VIBRATOR

12000 VPM

Excessive vibration vibrates out the entrained air which reduces freeze-thaw protection

The function of vibration includes liquefy the fresh concrete and release entrapped air bubbles

1	Specification of vibratory speed and vibration frequency*4			
#	#	Agency	Vibration frequency (Vibrations Per Minute)	Specification
	1	Illinois DOT	5,000 - 9,000	D&E-02, 2020
	2	lowa DOT	4,000 - 8,000	SERIES 2023
	3	Minnesota DOT	3,600 - 7,000	EDITION 2020
	4	New York DOT	6,000-10,000	Vol 2, 2023
	5	Pennsylvania DOT	Minimum of 6,000	PUB 408, 2020

Resources: 1. <u>Concrete Vibration by Prof.Dr.Bruce A.Suprenant</u>; 2. <u>Vibrator of slip-form paver</u>. 3. Shane Tymkowicz and Robert F. Steffes, 1997, Vibration Study For Consolidation Of Portland Cement Concrete; <u>Bob Steffes, 2000, Headed For The End Of The Trail</u>; 4. State specification.

Project Objectives

- 1. Investigate the affects of paving components. To explore how different combinations of vibrator frequency, paver speed, and concrete workability impact the quality of consolidation.
- 2. Develop a novel experimental setup to replicate actual paving process. A novel and small-scale experimental setup is used to quantify the consolidation of fluid concrete as a function of key paving parameters, then to measure the quality of consolidation.
- **3. Develop a comprehensive assessment system.** Utilize Computer Vision (CV) and Discreate Element Method (DEM) to characterize the distribution of air, coarse aggregate, and mortar, then reconstruct a meso-scale model to find a optimal spatial distribution of concrete components to build a benchmark.
- 4. Provide a practical guidance. Results from this study will allow the researchers to determine the optimal amount of vibration energy needed based on the workability of the concrete mixture.
- 5. Improve the service life of concrete pavement. Eventually, this method will be useful for assisting paving contractors in selecting appropriate vibration frequencies that will result in the construction of long-life, durable concrete pavements based on the concrete workability and paver speed.

Project Approach

Pittsburgh

Paver Consolidation Simulation (PaCS)

Schematic of the PaCS apparatus

Experimental setup of the PaCS

Detail of the PaCS experimental setup

133

Slump: 1.00 in

Air: 5.0 %

Slump: 1.50 in

Air: 5.5 %

Slump: 1.25 in

Air: 5.3 %

83

Slump: 1.25 in

Air: 5.5%

Slump: 2.00 in

Air: 6.0%

Image recognition and processing

3D aggregate mathematical representation

Utilize laser scanner to capture aggregate morphology

Mathematical representation with Spherical harmonics

Radius: [3.27, 8.99]

Radius: [3.29, 9.02]

Radius: [3.10, 8.77]

Radius: [3.29, 8.84]

Spherical harmonics expansion

Generate numerous digital aggregate particles with random field theory

Optimal distribution simulation

Utilize DEM to get optimal spatial distribution of coarse aggregate

Assessment of concrete consolidation

Characterize the quality of consolidation

Summary

Under consolidation

- Large entrapped air
- Granular arches 2.
- More average mortar around 3. small aggregate

0 О 0 0

Good consolidation

- Entrapped air released 1.
- Granular arches broken 2.
- Amount of small aggregate increase 3.
- Average mortar around small 4. aggregate decreases, with an increase in large aggregate
- Variation of middle aggregate 5. slightly increase

Over consolidation

- Entrained air released
- Large aggregate lift-up 2.
- 3. Average mortar around large aggregate and variation increases significantly
- Amount of middle aggregate is decreased, 4. with a slight improvement in stability
- Insignificant change in small aggregate 5. distribution, and even a better stability

Medium aggregate

Small aggregate

O Entrapped air voids • Entrained air voids

Thank you

- Swanson School: engineering.pitt.edu
- IRISE: https://www.engineering.pitt.edu/subsites/consortiums/irise
 DISCOVER Lab: https://www.fascetti.org

PITT

ENGINEERING EXCELLENCE SINCE 1846