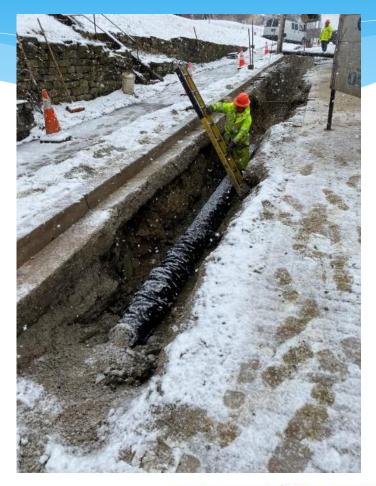
Investigating New Underground Utility Location Technologies and Novel Methods to Improve the Safety and Efficiency of Highway Construction

> Lev Khazanovich IRISE ANNUAL MEETING MAY 17, 2023

The Problem

Precise location of underground utilities is a major challenge for highway design and construction


In many instances, position of the utilities is unknown or incompatible with existing records

Project Objectives

To investigate emerging technologies that could more accurately determine lateral position and depth of both known and unknown utilities to improve safety and optimize schedules for highway construction

Current Practices

Highly dependable on tracer wires and pavement marks

Use expensive vacuum truck

Common & Challenging Scenarios

 Unmarked cables
Abandoned lines
Plastic conductors
Unreliable depth data
Utilities in various

subgrade materials

University of Pittsburgh | Swanson School of Engineering

PITT IRISE

Requirements

Provide fast, accurate and easy to interpret results.

Provide accurate lateral and depth information of underground utilities.

Locate plastic pipes with and without tracer wires.

Scan a whole project segment in case of potential unmarked or abandoned utilities.

Present accurate results in various subgrade materials, especially considering Pennsylvania's "blue slab" subgrade.

Technologies Scanned

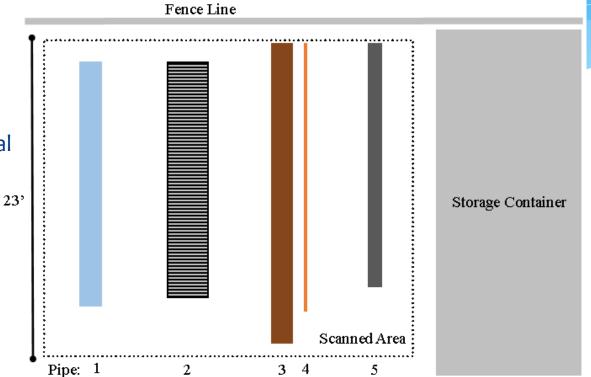
Ground Penetrating radar Number of antennas Single anthena Array system Signal type Single frequency GPRs Stepped Frequency Continuous Wave (SFCW) GPRs

Selected Technologies

Screening Eagle

IDS GeoRadar

RodRadar


University of Pittsburgh | Swa

Side-by-Side Field Testing of Selected Technologies

Controlled Site

- * Construction Site
 - * 16 inch ductile iron pipe 4 feet deep
 - Unmapped 1 inch electrical conduit 6 feet deep
 - 6 inch diameter pipe running parallel to a section of the 16", 4 feet deep
 - Unmapped gas main running parallel to a section of 16"
- * Drivable Site
 - Ductile iron waterline 4 feet deep

c))					
6"	• Pipe Label	Material	Diameter (inch)	Length (feet)	Depth (feet)
waterline 4	Pipe 1	PVC	6.5	12	6
	Pipe 2	Corrugated	10	15	3.5
	Pipe 3	Ductile Iron	6.5	20	6.5
	Pipe 4	Plastic Speed	1	17	3
University of Pittsh	Pipe 5		4	12	4.5
waterline 4 University of Pittst	Pipe 2 Pipe 3 Pipe 4	Corrugated Ductile Iron	10	12 15 20 17 12	

Results

- * In the last several years, ground-penetrating radar (GPR) technology has improved dramatically in terms of data collection and data analysis.
- * The selection of the optimal tool depends on the stages of the project:
 - * Design stage: The use of array systems like Kontour is recommended.
 - * Pros: High resolution; High productivity; Compatible with BIM models.
 - * Cons: High cost of the device; Data analysis requires significant expertise and is relatively time-consuming.
 - * Pre-construing stage:
 - * step frequency GPRs like Screening Eagle
 - * Pros: Relatively cheap, easy to operate
 - * Cons: Line-evaluation, resolution limitations
 - * Excavation stage: RodRadar
 - * the last line of defense, easy to use(?)
 - * Cons: not fully tested and expensive