A Novel Methodology for Structural Optimization of Bridge Decks Against Corrosion

John C Brigham IRISE ANNUAL MEETING MAY 17, 2023

Bridge Deck Corrosion

Bridge deck corrosion is a common cause of bridge failure and frequent need for rehabilitation.

Typical damage caused by steel corrosion:(1) Steel Degradation, (2) Deck Delamination,(3) Deck Spalling.

Lake View Drive over I-70 Bridge, Pittsburgh 2005

Bridge Deck Corrosion (cont.)

Reinforcement corrosion in concrete is an **Electrochemical Process** with anode, cathode, and electrolyte, where **chloride ions** act as a catalyst by breaking the passivating film of steel caused by the alkalinity of concrete.

Progression of reinforcement corrosion in concrete of various qualities

Corrosion Modeling

Chloride penetration is a nonlinear mass transport problem with respect to environment, material, and cracking.

Preliminary transport simulation using lattice modelling framework

Effect of **Freeze-thaw cycles** on diffusion coefficient of concrete.

Concrete type	<i>D</i> _c (10 ⁻¹² m²/s)					
	365 days	720 days				
P1M1	1.88	1.76				
P1M2	1.76	1.84				
P1M3	2.23	2.35				
R2M3	1.74	1.88				
R3M3	1.43	1.45				
R4M2	3.15	3.09				
R4M3	2.44	2.56				
Note: D_c = apparent diffusion coefficient						

Effect of concrete type

University of Pittsburgh | Swanson School of Engineering

We plan to consider:

Corrosion Modeling (cont.)

Bridge deck corrosion is a coupled process of chloride ingress, steel rusting, and deck degradation.

We plan to consider:

Steel rust occupies 3 to 10 times greater volume than the steel.

Mechanical performance and Cracking simulation using Lattice Discrete Particle Model (LDPM)

Multiphysics LDPM coupling mechanical performance and chloride transport

Schedule

Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Literature Review: ~6 months								
Construction of Modeling								
Framework:								
~10 months								
Validation of the Model :								
~6 months								
Mitigation Strategy								
Optimization:								
~12 months								
Final Report Writing:								
~3 Months								

References

- Win, P. P., Watanabe, M., & Machida, A. (2004). Penetration profile of chloride ion in cracked reinforced concrete. Cement and concrete research, 34(7), 1073-1079.
- Melchers, R. E. (2020). Long-term durability of marine reinforced concrete structures. Journal of Marine Science and Engineering, 8(4), 290.
- Avadh, K., Jiradilok, P., Bolander, J. E., & Nagai, K. (2022). 3D mesoscale simulation of the influence of corrosion on loss of tension stiffening in reinforced concrete. Construction and Building Materials, 339, 127684.
- Issa, M. A., & Khalil, A. A. (2010). Diffusivity and permeability of high-performance concrete for bridge decks. PCI journal, 55(2).
- Wells, D., Palle, S., Meade, B., & Hopwood, T. (2014). Sealants, Treatments and Deicing Salt Practices to Limit Bridge Deck Corrosion and Experimental Deck Sealants and Pier Cap Coating on Interstate 471 (No. KTC-14-4/FRT194). University of Kentucky Transportation Center.
- Koulouris, K., & Apostolopoulos, C. (2020). An experimental study on effects of corrosion and stirrups spacing on bond behavior of reinforced concrete. Metals, 10(10), 1327.
- Wang, Y., Liu, Z., Fu, K., Li, Q., & Wang, Y. (2020). Experimental studies on the chloride ion permeability of concrete considering the effect of freeze-thaw damage. Construction and Building Materials, 236, 117556.
- Djerbi, A., Bonnet, S., Khelidj, A., & Baroghel-Bouny, V. (2008). Influence of traversing crack on chloride diffusion into concrete. Cement and concrete research, 38(6), 877-883.
- Al-Nawadi, H. (2019). Corrosion behavior of reinforced concrete bridge decks under laboratory and field conditions (Doctoral dissertation, Rutgers University-School of Graduate Studies).
- Gucunski, N., Maher, A., Basily, B., La, H., Lim, R., Parvardeh, H., & Kee, S. H. (2013). Robotic platform rabit for condition assessment of concrete bridge decks using multiple nde technologies. HDKBR INFO Magazin, 3(4), 5-12.

THANK YOU

