

FOSS (Fiber Optics Sensing System) at NASA AFRC - Overview

OPTICAL SENSORS FOR ENERGY APPLICATIONS

March 2023

Patrick Hon Man Chan
hon.chan@nasa.gov

Table of Content

- Fiber Optics based sensors how it works
 - Fiber bragg gratings
- Types of fiber optics based interrogator
 - WDM
 - OFDR FOSS is based on this technology
- Advantage of OFDR
- AFRC's FOSS technology implemented

Why Choose Fiber Optic Sensors over Resistive Gages?

One Of These Things (is Not Like The Others)

(Heavy)

(Big)

(Light, small, easy)

Fiber Bragg Grating (FBG) as sensor

Principle

- Fiber Reflector that reflects a particular wavelength and transmit all others
- Bragg Wavelength: $\lambda_B = 2n_e \Lambda$

Measuring Strain(ϵ) or Temperature (Δ T) via FBG sensor

$$\frac{\Delta \lambda_B}{\lambda_B} = (1 - p_e)\varepsilon + (\alpha_{\Lambda} + \alpha_n)\Delta T$$

- $\Delta \lambda_B$ = change in Bragg wavelength <u>due</u> to <u>environmental change</u>
- λ_B = Initial Bragg wavelength of FBG
- p_e = strain-optics coefficient
- α_{Λ} = Thermal expansion coefficient
- α_n = thermo-optic coefficient

How do FBG sensors works?

Like an accordion → change in Bragg Wavelength

Typical FBG sensing via Wavelength Division Multiplexing (WDM)

NASA

- Excitation Source (light source)
 - LED
 - Laser
- Fiber Sensors (FBG)
- Photodetector (A/D)
- Detection Scheme (Optical Spectrum Analyzer)

Pro/Con of WDM

- Advantage
 - Sensors can be ~km away from interrogator
 - Relative Simple Measurement
 - Commercially Available
 - High Sampling Speed Available (~MHz)

Disadvantage

- Location of each sensor matters
- Each sensors has to have unique wavelength
- Only ~10 sensor can occupied 1 data channel
 - Aliasing effect
 - When 2 sensors intersects one another

NASA's Unique FBG Interrogation Technique: OFDR

- Optical Frequency Domain Reflectometry (OFDR):
 - Based on laser interferometry
 - Single Longitudinal mode laser needed
 - Involves signal processing
 - Fourier Transform/inverse Fourier Transform
 - Use weak reflectivity FBG
 - Typical WDM FBG's R=80%
 - Typical OFDR FBG's R=0.05%
 - So why use OFDR for sensing instead?
 - Many advantages that WDM can't match

Advantage of OFDR over WDM

NASA

- High Spatial Density over WDM-based sensing
 - Up to 1000 FBGs can be multiplexed (OFDR)
 - At most 10 FBG sensors per fiber (WDM)
 - FEM type of data can be achieved through real-time testing

- Cost per sensor length is <u>dramatically reduce</u> vs WDM-based sensors
 - \$0.75/FBG (OFDR), about \$60 for 84 sensors
 - \$200/FBG (WDM)

NASA Composite Crew Module Testing (2011)

Optical Frequency Domain Reflectometry

- All FBGs are written at the same wavelength (λ_B) , instead of each having a unique wavelength (WDM)
 - Multiplexing of hundreds of sensor in single fiber
- A narrowband wavelength tunable laser source is used to interrogate multiple sensors.
- Each FBG sensor is only ½ inch long

Principle of OFDR (Optical Frequency Domain Reflectometry)

- Combine 2 coherent waves to generate a beat frequency
 - This is an unique beat frequency based on the length difference ΔL
- Multiple sensors with unique beat frequencies (ΔL_{fba}) are captured
- In Fourier Domain each sensor with unique frequency is separated, and iFFT to obtain its design wavelength (λ_B)

$$I_R = \sum_i R_i Cos(k2n_0 L_i) \qquad k = \frac{2\pi}{\lambda}$$

R_i – spectrum of ith grating

 n_0 – effective index

L - path difference

k – wavenumber

Flow-chart: OFDR Signal Processing (Pre-sensor)

Layman's Term: Tuning your favorite radio station!

Multiple frequencies are broadcasted on airwave

Radio tuner accepts ONE frequency

Radio analogy to Optical Frequency Domain Reflectometry

FOSS Components

AFRC's Current FOSS Capabilities

Current system specifications

Teni system specifications	
Fiber channels	2 to 4 to 8
Max sensing length / fiber	40 ft
Max sensors / fiber	2000
Fiber type:	SMF-28
Max sample rate (flight)	50 Hz
Power (flight)	28VDC @ 4.5 Amps
Power (ground)	110 VAC
User Interface	Ethernet
Weight (flight, non-optimized)	27 lbs
	Fiber channels Max sensing length / fiber Max sensors / fiber Fiber type: Max sample rate (flight) Power (flight) Power (ground) User Interface

Weight (ground)Weight (launch)7 to 25 lbs35 lbs

Size (flight, non-optimized)
 7.5 x 13 x 13 in

Size (ground, latest) 10 x 4 x 6 in

• Size (launch) 19.25 x 9 x 6.25 in

Flight System

Ground Systems

Launch System

NASA

- Technology is first pioneered/patented at NASA Langley Research Center (LaRC) during the late 90's:
 - Laboratory-based system
 - One sample being taking every 30 second (one channel).
- AFRC miniaturized and developed an "one-box system" for aerospace application
 - Compact system for flight or ground test
 - Patented improved sampling rate to 100 samples per second (multiple channels)

Parker; US Patent 8,700,358

FOSS Fields of Operation

Composite Crew Module - NESC

NASA

- Four fibers were installed around the module's three windows and one hatch
- Real-time 3D strain distributions were collected as the module underwent 200%DLL pressurization testing
- Measured strains compared and matched well to predicted model results
- Project Conclusion:
 - ""Fiber optics real time monitoring of test results against analytical predictions was essential in the success of the full-scale test program."
 - "In areas of high strain gradients these techniques were invaluable."

Cryogenic Liquid Level-Sensing using cryoFOSS

The Challenge

- The transitional phase between liquid and gas of cryogenics is difficult to discriminate while making liquid level measurements
- Using discrete cryogenic temperature diodes spaced along a rake yields course spatial resolution of liquid level

FOSS Approach

- While using anemometry methods the transitional phase can be mapped better
- Using a single continuous grating fiber high spatial resolution can be achieve

Applications:

- Launch vehicles
- Satellites
- Civil Structures
- Ground Testing
- COPV bottles

Cryogenic Container located at MSFC (below deck)

Two Types of cryoFOSS sensors

Active sensors – via co-locating heating wire

Parker Jr et al, USP 9074921

 Passive sensors – via enhanced CTE values of a PTFE sleeve

Example of Flight Validation - Predator-B (Ikhana) Flight Testing

Instrumentation

- 2880 FBG strain sensors (1920 recorded at one time)
- 1440 FBG sensors per wing
- User-selectable number of FBG sensors for real-time wing shape sensing
- 16 strain gages for FBG sensor validation
- 8 thermocouples for strain sensor error corrections

Installation Advantages

- Greatly reduced installation time compared to conventional strain gages
 - 2 man days for 40' fiber (2000 strain sensors for a continuous surface run)
 - Multiple sensors installed simultaneously
 - Same surface preparation and adhesives as conventional strain gages
 - Minimal time spent working on vehicle
 - All connectors can be added prior to installation, away from part
 - No soldering, no clamping pressure required
- Can be installed on aerodynamic surfaces with little to no impact on performance

Installation Challenges

 Some measurement locations not practical due to fiber minimum bend radius

Not practical if only interested in spot

1 3 6 X 12 18 X 10 14% .

Flight Test Validation - Ikhana

Structural Algorithms using FOSS

Structural Shape

- Real-time wing shape measurement using fiber optics sensors
 - (Ko, Richards; Patent 7,715,994)

Win-tip deflection measurement of AFRC's Predator B via FOSS

Externally applied loads

• Real-time applied loads on complex structures using fiber optic sensors (Richards, Ko; Patent 7,520,176)

FOSS project - LOFTID

- A launch capable version of FOSS is being developed to support LOFTID
- FOSS is integrated into LOFTID to monitor nose-cone temperature during reentry

- FOSS conducted and pass all environmental testing
 - EMI testing
 - Burn-In
 - Thermal vacuum cycling (TVAC)
 - Vibration testing
- Launched on Nov 1st 2022

Summary

• NASA AFRC has successfully developed fiber optics strain sensors (FOSS) technology

from laboratory to real-world application

- Commercialization of technology is on-going via NASA Technology transfer
 - Aerospace Sector
 - Energy Sector
 - Biomedical Sector

