Case Study: Gas Monitoring in a 5000-ft-deep Wellbore using DAS, DTS, and DSS

Dr. Jyotsna Sharma

Assistant Professor, Dept. of Petroleum Engineering Adjunct Professor, Dept. of Electrical Engineering Louisiana State University

Case Study – Gas Monitoring in Wellbore

- I. Research Motivation
- II. DAS, DTS, and DSS Results
- III. Data Processing: De-noising, Data Compression, Cloud Computing
- IV. Automated Detection using Machine Learning
- V. Distributed Pressure Sensing using DAS and DTS
- VI. Flow Rate from DAS
- VII. Gas Void Fraction

Research Motivation – Blowout Prevention

Project with National Academy of Sciences' Gulf Research Program

Ref: https://en.wikipedia.org/wiki/Deepwater_Horizon_explosion

Gas in Riser Monitoring using Fiber Optic Sensor

Results from Distributed Acoustic Sensor (DAS)

Sharma, J.*, Cuny, T., Ogunsanwo, T., Santos, O. 2020. "Low-Frequency Distributed Acoustic Sensing for Early Gas Detection in a Wellbore." IEEE Sensors Journal 21(5): 6158-6169, 202

Results from Distributed Temperature Sensor (DTS)

Results from Distributed Strain Sensor (DSS)

Oil/Gas Deposit

DFOS Signal Processing and Denoising

Reference: Tabjula, J., Sharma, J.*. 2023. "Feature Extraction Techniques for Noisy Distributed Acoustic Sensor Data Acquired in a Wellbore". Applied Optics

Data Compression and Cloud Processing

Data Compression 10 sec x 10,000 x 5000/2.5 = 200 x 10⁶ data points 200 x 10⁶ x 4 = 800 x 10⁶ ~ 0.8 GB

Real-time data streaming @ latency 10 -30 sec

Reference: Sharma, J. et al. "Well-Scale Multiphase Flow Characterization & Validation Using Distributed Fiber Optic Sensors for Gas Kick Monitoring." Optics Express 28(26):38773-38787. Tabjula, J., Sharma, J.*. 2023. "Feature Extraction Techniques for Noisy Distributed Acoustic Sensor Data Acquired in a Wellbore". Applied Optics

Machine Learning and Automation

Automated detection using machine learning on fiber data

Reference: Ekechukwu, G.K., Sharma, J.* 2021. "Automated Detection & Quantification of Gas Influx Velocity in Wellbore from Fiber-Optic Sensor Data." Optical Society of America - Optical Sensors and Sensing Congress, July 2021, paper # JTh6A.11.

Distributed Pressure Measurement

0

5

Elapsed time (hrs)

10

Elapsed time (hrs)

Machine Learning and Automation: Distributed Pressure Sensing

PATENT: Sharma, J., Ekechukwu, E.K. *Distributed Pressure Sensing using Fiber Optic Distributed Acoustic Sensor and Distributed Temperature Sensor*, Patent Pending # 63/189,533; 2021 PAPER: Ekechukwu, G.K., Sharma, J.* 2021. "Well-scale demonstration of distributed pressure sensing using fiber-optic DAS and DTS". Scientific Reports (Nature) 11:12505 (2021).

Flow Measurement using DAS

FBE Band (Hz) / RMS	Exponential $y=a_1e^{b_1Q}$			Linear $y=a_2Q+b_2$			Cubic $y=a_3Q^3+b_3$		
	Regression constants		D2	Regression constants		D2	Regression constants		D2
	a ₁	b ₁	IX	a ₂	b ₂	IX.	C ₃	b ₃	IX.
200 - 500	3.97x10 ⁻⁰⁹	1.36x10 ⁻²	0.98	5.36x10 ⁻¹⁰	-3.66 x 10 ⁻⁸	0.86	6.99x10 ⁻¹⁵	7.29x10 ⁻⁹	0.98
RMS	7.89x10 ⁻⁷	1.13x10 ⁻²	0.94	5.72x10 ⁻⁸	-2.78 x 10 ⁻⁶	0.97	6.86x10 ⁻¹³	2.26x10 ⁻⁶	0.94

PAPER: Tabjula, J, Sharma, J.* 2023. "Empirical Correlations for Predicting Flow Rates using Distributed Acoustic Sensor Measurements, Validated with Wellbore and Flow Loop Datasets ". SPE Production and Operations Journal (Submitted).

Gas Void Fraction using DAS

Numerical Simulations

- A drift-flux model based transient wellbore two-phase flow simulator was utilized.
- Governing equations are two mass conservation equations and one momentum conservation equation.

$$\frac{\partial(\alpha_l \rho_l)}{\partial t} + \frac{\partial(\alpha_l \rho_l v_l)}{\partial h} = \Gamma_l$$
$$\frac{\partial(\alpha_g \rho_g)}{\partial t} + \frac{\partial(\alpha_g \rho_g v_g)}{\partial h} = \Gamma_g$$
$$\frac{\partial(\alpha_l \rho_l v_l + \alpha_g \rho_g v_g)}{\partial t} + \frac{\partial(\alpha_g \rho_g v_g^2 + \alpha_l \rho_l v_l^2 + p)}{\partial h} = -S_p$$

 α_g , α_l are gas, liquid void fractions; ρ_g , ρ_l are gas, liquid densities; v_g , v_l are gas, liquid absolute phase velocities, p is the pressure of both gas and liquid phase; S_p is the pressure source term; and t, h represents time and depth along the wellbore.

PAPER: Wei, C., Tabjula, J., Sharma, J. & Chen, Y^{*}. 2023. A Novel Data Assimilation-Based Real-Time State Estimation Method for Gas Influx Profiling During Riser Gas Events. Journal of Energy Resources Technology, 145(06). Tabjula, J., Wei, C., Sharma, J.*, et al.. 2023. Well-Scale Experimental and Numerical Modeling Studies of Gas Bullheading Using Fiber-Optic DAS and DTS. Journal of Petroleum Science and Engineering.

Results — Numerical Simulation

Gas front boundary position during expansion

Length of two-phase flow region

PAPER: Wei, C., Tabjula, J., Sharma, J. & Chen, Y^{*}. 2023. A Novel Data Assimilation-Based Real-Time State Estimation Method for Gas Influx Profiling During Riser Gas Events. Journal of Energy Resources Technology, 145(06).

Tabjula, J., Wei, C., Sharma, J.*, et al.. 2023. Well-Scale Experimental and Numerical Modeling Studies of Gas Bullheading Using Fiber-Optic DAS and DTS. Journal of Petroleum Science and Engineering.

Acknowledgement

- Thanks to all graduate and postdoc students Jagadeeshwar Tabjula, Temitayo Adeyemi, Rishikesh Shetty, Gerald Ekechukwu, Chen Wei
- LSU faculty and staff collaborators
- Sponsors: National Academy of Sciences, Exxon, Chevron, DOE, Shell, LA Board of Regents

