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• Reduce cost of sensing fibers – Sensor Fabrications
• Fully exploit telecom fibers.
• Draw-tower approach

• Reduce cost of sensor interrogators
• Fully exploit telecom gear and autonomous driving technology
• Aided by low-cost sensing fibers

• Develop ready-to-use packaging solutions for 10K to 1000K
applications

• Explore new applications beyond oil/gas: Nuclear Energy (Distributed 
Sensors)

Fiber Sensors as ubiquitous sensor technology 



Through Coating Writing Using –fs Lasers 

(d)

Reel-to-reel oil-immersion fiber writing setup
 Fast and continuous fabrication up to 1km fibers 
 Point-by-point writing (not phase mask!): flexible
 High-T stable distributed sensors & point sensor array
 Applicable for wide array of optical fibers
 High-T stable tested at 900C
 Sapphire  and silica

Type II: FBG Array                   Laser-Enhanced Rayleigh Profile



UV Laser Direct Sensing Fiber Fabrication in SMF-28
• Standard telecom fiber – through coating 
• One-shot UV phase mask writing 
• 10-km continuous sensing fiber fabrication possible
• Draw-tower free
• Sensing fiber cost ~$0.1-$1.0 per meter (competition: $10-30/m)

(d)

Reel-to-Reel Fabrications

Phase Mask One-Shot Fabrications

Sensing Fiber for φ-OTDR Distributed Acoustic Sensing



Sensing Fiber Enabled Low-Cost or “Coarse” OFDR

(d)

Parameter Our Laser Source

Wavelength sweep range 1 nm (telecom DFB)
Laser linewidth (coherence length) 100 kHz (~800 meter)
Two-point resolution 0.8 mm
Gauge length 24 mm

Commercial OFDR

80 nm

~1 kHz (>10 km)

10-µm

5-mm

• Reduce cost of the interrogation lasers – telecom DFB 
• Laser wavelength: 100 kHz – interrogation length ~ 400 m (actual ~100 m)
• Δλ tuning: 1-nm 2-point resolution drops by 80 times (but sensing backscattering signal increase by 30 dB)
• No need sensitive detectors (low-cost)
• No need high DAQ sampling rate  (low-cost)
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Sensing Fiber Enabled Low-Cost or “Coarse” OFDR

(d)

• Implementing denoise algorithm
• Polarization diversity reduce interrogation length from 400-m to ~100 m
• Spatial resolution 2.5-cm is achievable (Strain resolution: 1-µε, Temperature: 1C)
• Mode-hopping only cause small additional errors (can be averaged out)

(a) traditional method; (b) overlapping method. Strain: Rayleigh Enhanced Fibers

Strain: Pristine Fibers Temperature: Rayleigh Enhanced Fiber



Potential Application: Coarse-OFDR for Distributed Radiation Sensing 

(d)

• Distributed Loss Measurements: RIA
• Spatial resolution: 2-cm
• Corning aluminum-doped Fiber



Low-Cost DAS: Distributed Fiber Sensors - 10× cost Reduction

•

 Conventional Fiber 
Sensing Schemes 

Optical Transceivers 

Optical Sources Requirement   

Optical Coherence 100 meter to 20 km Not required or up to 1 m 

Optical Wavelength Tunning 10-nm or more No required or up to 0.4-nm 
(achievable through current tuning) 

Cost $8,000-$20,000 $20-$250 

Modulation Requirements   

Need dedicated modulator Yes NO – Already built-in! 

Modulation Speed 40-250 MHz 10GHz-25 GHz 

Cost <$5,000 Integrated with Transceivers 

Network Integratable No Yes 

 

DAS Based NPS 3×3 Scheme



Silicon Photonics: DAS Interrogator 
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Fiber optical 
components

Fully integrated! 

High-speed photodetectors

In Collaboration with Prof.  Youngblood at Pitt: youngblood@pitt.edu



Telecom laser enable FBG Interrogation

• Wavelength tuning stitching 
• Gas-cell wavelength reference
• High-speed interrogation possible
• Heterogeneous multi-core architectures: FPGA+ DSP 
• Rapid sensor data demodulation via DSP
• Static wavelength variation better than ± 2pm 

Long-Term Stability Testing 






Telecom laser enable FBG Interrogation
Laser Velocimeter Comparison: 5kHz 

vibration

In Collaboration with Prof.  Bajaj at Pitt: nbajaj@pitt.edu

Vibration 5kHz Vibration 10kHz

(a) (b) (c)

Vibration: 1kHz



Advanced Packaging Technique
Rapid and straightforward sensor deployments

 Smart tapes
 Metal additive manufacturing
 Glass sealants

Ultrasonic Additive Manufacturing: up to 400C

Glass Sealant Smart Metal Components

Smart Tapes

True Strain Free Sensors



Packaging: True Strain-Free Multiplexable Sensors
Multiplexable True Strain Free SensorsPackaging

o CO2 laser Tapering
o Precise profile control
o Less than 0.15 dB loss

T Calibration: 77K to 600K



Package 2:Hermetic Fiber Sensor Packaging via Glass Sealant

Metal Tube

Glass sealant pellet

Embedded sensor

Freestanding T sensor

 Wide selection of sealant materials: glass and ceramics
 TEC of glass sealant ~ 5ppm/C –between silica fiber and metal. 
 Hermetical bonding on metals – Compressive strain
 Rapid process possible 

Helium Leak Test Results



Package 3: Metal Additive Manufacturing 

Powder-bed AM Sensor Embedding
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Ultrasonic AM Sensor Embedding
Sensor Fused AM Processes

• Enable smart components

• Provide feedbacks for AM processing optimization

• Improve sensor performance
(In collaboration with Prof. Albert To of Pitt: albertto@pitt.edu)
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Explore New Applications: High-T Hydrogen Sensing

Pd-doped Metal Oxide Porous Materials Enabled H2 Sensors Operated at 800C

High-T Fiber Sensors for Hydrogen Applications

• 800oC distributed H2 and T measurements

• 1-cm T sensing spatial resolution

• 3-cm hydrogen sensing spatial resolutions

• 6-m interrogation length in harsh environments

• H2 SOFC and Waste plastic gasification process

* In collaboration with NETL 

T and H2 Sensor for 
Waste Plastic Gasification

High Spatial Resolution 
Sensor for H2 SOFC
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Fiber Sensors for Nuclear Applications

Project Objectives
• Can fiber sensors survive and function in extreme harsh in-pile conditions?

• Types of fibers?
• Sensor fabrication processes?
• Type of sensors? – Rayleigh-enhanced distributed sensors
• Sensor drifts and mitigation schemes? 

• How severe is radiation contamination for fiber sensors (Possible hot sensor 
replacements).

• Use fiber sensors as a mean to enable Condition-Based Monitoring for NE 
Systems  
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Fabrication of High-T Stable Distributed Sensors in Rad-hard Fiber 

Enhanced SMF-28e+

Super Radhard RRSMFB

Standard SMF-28e+

In Collaboration with LUNA Innovation: Dr. Derek Rountree
(rountreed@lunainc.com) 

mailto:rountreed@lunainc.com
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In-Pile Fiber Sensors Testing

• MITR Tests: 560C to 650C, total fast neutron flux 4.4×1021 n/cm2 Per Year
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Fiber Sensors for Nuclear Applications

Irradiation Effects of Distributed Fiber Sensors

Enhanced SMF-
28e+

RRSMFB

Pristine 
SMF28e+

Super Radhard
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Evolution of CT

One coefficient can be used 
(~2.5% error for all locations, fast neutron flux variation ~8% )
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SMF28e+ fiber
One coefficient, 2.7% error for all locations

.

Super RadHard fiber
One coefficient, 2.4% error for all locations

.

RRSMFB fiber
One coefficient, 2.5% error for all locations

.
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Radiation-induced Sensor Drifting and Mitigations: Sensor Fusion

Mitigation Strategy:
- Single Thermocouple as “gold standard” TC4
- LSTM neural network apply to the fiber sensor at TC4 location: harness temporal knowledge 
- kNN neural networks pass knowledge to other fiber sensors located in different spatial position
- Absolute error within 4C
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Temperature Profile of MIT Research Reactor Core
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Summary

• It is possible to reduce cost of sensing fibers by ×10 times.
• It is possible to reduce cost of sensor interrogators by ×10 times. 

• Not the best performance but good enough. 
• Expand applicability of fiber sensors 
• Scale-up deployments for energy infrastructures  

Thank you! 
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