Single crystal fiber growth and sensing applications in energy

Speaker: Michael Buric, Staff Scientist NETL, RIC-MEM

With: Guensik Lim, Jeff Wuenschell, and Gary Lander (LEIDOS contractor scientists)

U.S. DEPARTMENT OF ENERGY | NEINATIONAL ENERGY TECHNOLOGICAL LABORATOF

Research Breakdown

- Increase data-visibility for energy-system operators through high-value distributed measurements (replacing single-point)
 - "Toughest environments provide the highest value"
 - Enable predictive capabilities through data-analytics and AI/ML
- Methods: Produce novel single-crystal fibers for harsh-environment sensor applications
- Design Novel fiber-optic interrogators that work with SC-fiber
- Add novel parameters like gas composition, flow, radiation, or others
- Market complete sensor solutions for specific applications/customers with harsh-environment sensing needs (fossil, nuclear, solar-thermal, etc)
- Control processes for efficiency (\$\$, fuel, CO₂), Predict failures for maintenance

Why use single crystal fibers in energy applications?

*	Why	optical	fiber?
---	-----	---------	--------

- 1. No electrical interference
- 2. Medium temperature (\sim 800c) $\frac{1}{2}$.

U.S. DEPARTMENT OF

- 3. Single Feedthrough
- 4. Inexpensive
- 5. Easily functionalized
- 6. Distributed!

**	Single	crystal	fiber
----	--------	---------	-------

- 1. High melting point
 - Corrosion resistant
- 3. Compact size (100 microns)
- 4. Wide transmission window
- 5. Benefits of silica +low-OH absorption

	Coal / Waste plastic biomass Gasifiers	Combustion Turbines (H2 or NG)	Solid Oxide Fuel Cells / Electrolyzers	Hybrid systems	Nuclear	Solar Thermal
Temperatures	Up to 1600°C	Up to 1300°C	Up to 900°C	Up to 1000°C	Up to 1000°C	Up to 700°C
Pressures	Up to 1000psi	Pressure Ratios 30:1	Atmospheric	System dependent	High pressure steam	High pressure steam
Atmosphere	Highly Reducing, Erosive, Corrosive	Oxidizing	Oxidizing and Reducing	Oxidizing and reducing	Gamma and Neutron radiation	Daily heating/cooling
Examples of Important Species	H ₂ , O ₂ , CO, CO ₂ , H ₂ O, H ₂ S, CH ₄	O ₂ , Gaseous Fuels (Natural Gas to High Hydrogen), CO, CO ₂ , NO _X , SO _X	Hydrogen from Gaseous Fuels and Oxygen from Air	H2, NG components, contaminants	Head-space gases, water, molten salt	Water,brine, molten salts

Э

Making Single-crystal fiber with LHPG

- CO₂ laser source for heating
- "Doughnut" beam shaper surrounds molten zone with light
- Motors advance feedstock (pedestal) and fiber
- Slow process (mm/min)
- Grows pure crystals (no cladding)

NETL LHPG Capabilities and features

Some NETL LHPG stats:

- Minimum diameter variation <2um
- Minimum fiber diameter <55um
- 50W laser power available (<1.5mm pedestals)
- Automatic fiber centering (+/-2mm)
- Continuous growth of any length with start/stop algorithm
- Error Erasing Algorithm
- Second LHPG brought online in 2021
- High temperature claddings

Active diameter variation for sensing

*SPIE Rising Researcher Award 2018

Collaboration / U Pitt LHPG

Contributed by Paul Ohodnicki, U Pgh.

NATIONAL RG

Growth of novel compositions (U of Pgh)

Material Uses

 Crystal Fibers with Enhanced Stability and/or New Functional Performance

LHPG System Operation

Material Characterization

- Single Crystal XRD: structure determination
- EDS / EPMA: chemical composition

Feedstock Manufacturing

- Powder based manufacturing of different polycrystalline feedstocks for source rods in LHPG
- Allows for experimentation with varying compositions

Growth Optimization

 Optimize Growth Processes Considering Thermodynamics and Kinetics

New Material Growth utilizing LHPG

- Versatility in growing refractory oxides (Including new functional oxides)
- Crucible free, high purity, diameter > 100 μ m
- Expanding capabilities of crystal fiber sensors (new parameters, enhanced stability, etc.)

Feedstock Microstructure

Fiber Growth

Contributed by Paul Ohodnicki, U Pgh.

ull Scale 2213 cts Cursor: 0.0

Experimental SC fiber Cladding

- Grow cladded fibers with 2-stage LHPG
 - Sapphire or YAG

ENERGY

- Sol-gel (or other) dopant additions
- Evaluate materials compatibility in energy systems
- Improve fiber performance

ATIONAL

TECHNOLOGY

Cladding Application

Dopant Species Made to Date:

Dopant species	Host crystal
Cr (chromium)	Sapphire
Nd (neodymium)	YAG
Ho (holmium)	YAG
Er (erbium)	YAG
Yb (ytterbium)	YAG
Ce (cerium)	YAG/ LuAG
Gd (gadolinium)	YAG/ LuAG

Automatic Dopant Segregation through LHPG: Top left: Visible light guiding in GRIN YAG fiber, Top right: EMPA map of Nd concentration in a GRIN YAG fiber, Bottom plots: Co-doped Nd and Ho: YAG fiber dopant concentrations in X (left) and Y (right)

Reel-to-Reel sol-gel processing system for cladding dopant additions

- Coater designed to coat long lengths of single crystal fiber (~several meters) in sol gel solution and "soft bake" with hot air dryer.
- Post-coating thermal processing – vertical furnace with 1200°C max temperature.
- Processed fiber used for regrowth and dopant distribution

IATIONAL

FECHNOLOGY

Novel dual LHPG system for clad sc-fiber

- Constructed in-house
- Mechanical components machined @ NETL/MGN
- >\$200k investment (FE/ARPA-e)
- Enables novel 2-stage procedure
 - growth followed by cladding
 - 1mm -> 300um -> 100um (or smaller)
- More than double throughput
- Unique capability/facility

How an SC-fiber becomes a T-sensor

- Introducing the NETL Raman DTS (distributed temperature sensor)
- Pulsed ~350ps 532nm green laser
- Excites Raman Scattering as pulse propagates
- Collects Raman with Fast avalanche photodiodes
- Optics designed for sapphire or YAG fiber
- First interrogator for SC-fiber
- First interrogator produced by NETL Interrogator Development Program

Raman DTS – Lab Prototype

- Off-the-shelf components
- Breadboard construction
- Enabled design optimization/tinkering
- Improved prototype used for fieldtesting / product version

15

DTS Field Prototype design

- Flight case design
- Shock-mounted optics
- Laser safety electrical interlocks
- Software for lead-in fiber
- YAG or Sapphire fibers
- Simplified operator controls
- First field test at MITR
- Second Field test at INL

NETL Custom Build Interrogators and their performance

Cost: <40k

Sensing range = >50 km; Spatial resolution = 1-2m; Acoustic frequency range ≤20 kHz (depends on the fiber length); Frequency resolution <2 Hz; Laser safety: Class 3B Cost: <35k

Sensing range = ≤1km; Spatial resolution = <1mm; Temperature resolution: 0.1°C Strain resolution: 2με Laser safety: Class 1 Cost: <70k

Sensing range = \leq 150 km; Spatial resolution = <5m; Temperature resolution: \pm 1 to 2°C Strain resolution: 10 to 20 µ ϵ Laser safety: Class 3B

ENERGY

Cost: <3k

Acoustic frequency range: 5Hz to 1MHz; Frequency resolution <1 to 2 Hz; Laser safety: Class 1

Cost: <8k

Acoustic frequency range: 1Hz to 500kHz; Frequency resolution <1 to 2 Hz; Laser safety: Class 3B

NATIONAL

TECHNOLOGY

Probe Design for remote measurement

NATIONAL ENERGY TECHNOLOGY LABORATORY

- 50' silica multimode fiber (105 μm), Thorlabs low-OH content silica.
- Fusion spliced to 1 m long single crystal sapphire probe (100 μm diameter).
- Single-crystal probe covers entirety of hot zone.

MIT Research Reactor Temperature Measurement

• Molten salt-loop development acceleration with distributed single-crystal harsh-environment optical fiber-sensors (ARPA-e 2019-2022)

Fiber-optic probe

(spliced radiation-resistant lead fiber to sapphire single-crystal fiber was inserted into protective stainless-steel tube)

Installed fiber-optic

dummy fuel element

Probe installed in Light Water Reactor

Data acquisition station

probe into the

Molten Salt temperature measurement with INL

(with Calderoni, Gakhar, McCary)

Chunks of NaCl-MgCl₂ eutectic saltmixture

Chloride salt-mixture loaded in a pre-cleaned and dried glassy carbon crucible, inside a top loading Kerr furnace

Salt-mixture melted at 500°C

Ar-atmosphere glovebox with metallic cover and OD 6 window - designed as Class 1 enclosure for laser work

Molten Salt temperature measurement results

NATIONAL ENERGY

Special considerations for nuclear sensing

Fig. 5: Optical transparency of silica and sapphire after accumulating a fast neutron fluence of $2.4 \times 10^{21} n_{fast}/cm^2$

Chen and Petri, Nuclear Energy 2022

Increased packaging/cladding requirements/options:

- Novel glass/ceramic compositions (tubing or cladding) to deflect or slow neutrons
- Correlated temperature/ radiation limits
- Alternate crystal species (other than sapphire)
- "Protective" dopants (higher neutron cross section near surface)
- Rayleigh enhancement

DTS in fossil – Pressurized Pulse Combustor

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Fully distributed sensing 5cm resolution
- Temperature measurements above 1100C
- Multiple probes deployed (sapphire and YAG)
- Transients observed easily

Two fiber-optic probes (sapphire and YAG) & thermocouple (left) and its installation on PPC test rig (right)

- Distributed Fiber-optic sensing will enable amazing new capabilities
- The toughest (and highest value) sensor locations are becoming accessible
- Single-crystal fiber will enable measurements where silica is problematic
- Interrogators can be developed at lower cost, for specific applications
- Functional materials can enable novel parameters like gas composition
- NETL can offer a complete solution with fiber, coatings, and interrogators

Measure where it counts!

VISIT US AT: www.NETL.DOE.gov

🥑 @NETL_DOE

🕑 @NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Dr. Michael Buric, RIC, FMT Michael.Buric@netl.doe.gov

