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a b s t r a c t

Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in
preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous
system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have
recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An
injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular
lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The
objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and
compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of
a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct
differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The
rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder
matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite
length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-
polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may
provide supportive scaffolding to promote in vivo axonal repair.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Biologic scaffolds composed of extracellular matrix (ECM) can
facilitate the constructive remodeling of numerous tissues including
esophagus [1,2], lower urinary tract [3,4], muscle and tendon [5,6],
and myocardium [7,8], among others. Although the mechanisms by
which ECM scaffolds promote a constructive and functional
remodeling response are only partially understood, recruitment of
endogenous multipotent progenitor cells [9,10], modulation of the
innate immune response [11,12], scaffold degradation with the
generation of bioactive molecular cues [13e15], and innervation
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[16] have all been shown to be important events in this process. The
contribution of the innate three-dimensional ultrastructure, unique
surface ligand distribution, or molecular composition to construc-
tive, functional remodeling is largely unknown. However, hydrogel
formulations of matrix scaffolds lack the native three-dimensional
ultrastructure of the source tissue but still possess in vitro
and in vivo biologic activity [17e22], suggesting that the
molecular composition of these materials is an active factor
in remodeling events. There have also been reports that suggest
tissue-specific biologic scaffold materials have properties that
enhance greater site-appropriate phenotypic cell differentiation
compared to ECM scaffolds derived from non-homologous tissue
sources [23e26].

The use of biologic scaffold materials within either the central or
peripheral nervous system has not been extensively investigated
[27]. However, it has been shown that innervation of remodeled
scaffold materials is an early event when such materials are placed
in several different anatomic locations and represents a predictor of
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constructive and functional outcomes [16,28,29]. It has also been
shown that innervation is a critical event in robust regenerative
responses that occur in species such as the newt and axolotl [30e
32]. Methods for the isolation of central nervous system (CNS)
ECM have recently been described. The objectives of the present
study were to develop a method to create hydrogel forms of brain
and spinal cord ECM, examine the biomolecular composition and
mechanical properties of the resulting hydrogels, and evaluate the
in vitro neural cytocompatibility and neurotrophic potential of
CNS-ECM hydrogels versus a hydrogel prepared from a non-CNS-
ECM; specifically, porcine urinary bladder matrix.

2. Materials and methods

2.1. Overview of experimental design

Following decellularization of porcine brain and spinal cord, the resulting brain
and spinal cord ECM (B-ECM and SC-ECM, respectively) were solubilized. The ECM
materials were analyzed for collagen and sulfated glycosaminoglycan content,
ultrastructure, and hydrogel mechanical properties. A commonly used neural cell
line for examining neurite extension, N1E-115 [33,34], was used to identify the
neurotrophic potential of ECM hydrogels in two- and three-dimensional culture. The
results were compared to an ECM hydrogel manufactured from a non-CNS source,
porcine urinary bladder matrix (UBM-ECM) [20].

2.2. ECM biologic scaffold production

Porcine brain, spinal cord, and urinary bladder were obtained from market
weight animals (Tissue Source, Lafayette, IN). Tissues were frozen immediately after
harvesting at �80 �C, thawed before use, and processed by tissue-specific methods
described previously (Table 1A) [23]. In brief, CNS tissue was agitated (spinal cord
tissue at 200 rpm; brain tissue at 120 rpm unless otherwise stated) in the following
decellularization baths: deionized water (16 h at 4 �C; 60 rpm), 0.02% trypsin/0.05%
EDTA (60 min at 37 �C; 60 rpm; Invitrogen Corp., Carlsbad, CA, USA), 3.0% Triton X-
100 (60 min; SigmaeAldrich Corp., St. Louis, MO, USA), 1.0 M sucrose (15 min; Fisher
Scientific, Pittsburgh, PA, USA), water (15 min), 4.0% deoxycholate (60 min; Sigma),
0.1% peracetic acid (Rochester Midland Corp., Rochester, NY, USA) in 4.0% ethanol (v/
v; 120 min), PBS (15 min; Fisher), deionized water (twice for 15 min each rinse), and
PBS (15 min). Each bath was followed by rinsing the remaining tissue through
a strainer with deionized water. Decellularized B-ECM and SC-ECMwere lyophilized
and stored dry until use.

UBM-ECM was prepared as previously described [35]. In brief, connective tissue
was removed from the serosal surface of the bladder. The tunica serosa, tunica
submucosa, and majority of the tunica muscularis mucosa were mechanically
delaminated, which left the basement membrane and tunica propria intact. Luminal
urothelial cells were dissociated from the basement membrane by soaking the UBM-
ECM in deionized water. The UBM-ECM was then agitated in 0.1% peracetic acid in
4.0% ethanol (v/v; 120 min; 300 rpm) followed by a series of PBS and deionized
water rinses and lyophilization.

2.3. ECM digestion and solubilization

Lyophilized and comminuted B-ECM (20 mesh), SC-ECM (20 mesh or hand cut),
and UBM-ECM (20 mesh or hand cut; 400e1000 mm largest particle dimension as
Table 1
Methods for decellularization and solubilizing B-ECM, SC-ECM, and UBM-ECM.

A. Decellularization methods

Step B-ECM and SC-ECM
(120 and 180 rpm respectively)

UBM-ECM
(300 rpm)

1. Deionized water soak (18e24 h) Mechanical
delamination2. 0.025% Trypsin (1 h)

3. 3% Triton � 100 (1 h)
4. 1 M Sucrose (30 min.)
5. Deionized water soak (30 min.)
6. 4% Deoxycholic acid (1 h)
7. 0.01% Peracetic acid

B. Methods for solubilizing and digesting

B-ECM SC-ECM UBM-ECM

Particle size <400 mm 400e1000 mm
Solubilization 0.01 N HCl
Digestion 1 mg/mL Pepsin
measured by mesh diameter or ruler) were separately placed into a 0.01 N HCl
solution containing 1 mg/mL pepsin (Sigma) at a concentration of 10 mg ECM/mL
and stirred at room temperature for 48 h as previously described (Table 1B) [20].
After 48 h, B-ECM, SC-ECM, and UBM-ECM were completely digested and formed
a pre-gel solution (pH w 2). The pre-gel ECM solution was brought to pH 7.4 using
0.01 N NaOH and diluted to the desired volume/salt concentration using 10� and
1 � PBS. Pepsin is irreversibly inactivated at pH above 7.5 [36].

2.4. Collagen and sGAG quantification

Collagen concentration of the pre-gel ECM solutionwas determined for samples
from each production batch with the Sircol Assay Kit (Biocolor Ltd., UK) following
the manufacturer’s recommended protocol (n ¼ 4 in duplicate or triplicate).
Sulfated glycosaminoglycan (sGAG) concentrations were determined using digested
ECM at a concentration of 50 mg ECM/ml with 0.1 mg/ml proteinase K (Sigma) in
buffer (10 mM TriseHCl, pH 8.0, 100 mM NaCl, 25 mM EDTA for 48e72 h at 50 �C)
using the Blyscan Sulfated Glycosaminoglycan Assay Kit (Biocolor Ltd., UK) and
following the manufacturer’s recommended protocol (n ¼ 3 in duplicate or
triplicate).

2.5. Scanning electron microscopy

Scanning electron microscopy was used to examine the surface topography of
brain, spinal cord, and UBM-ECM hydrogels. Five hundred micron thick hydrogels
were prepared and then fixed in cold 2.5% glutaraldehyde (Electron Microscopy
Sciences, Hatfield, PA) for 24 h followed by three 30 min washes in 1� PBS.
Hydrogels were dehydrated in a graded series of alcohol (30, 50, 70, 90, 100%
ethanol) for 30 min per wash, and then placed in 100% ethanol overnight at 4 �C.
Hydrogels were washed 3 additional times in 100% ethanol for 30 min each and
critical point dried using a Leica EM CPD030 Critical Point Dryer (Leica Micro-
systems, Buffalo Grove, IL, USA) with carbon dioxide as the transitional medium.
Hydrogels were then sputter-coated with a 4.5 nm thick gold/palladium alloy
coating using a Sputter Coater 108 Auto (Cressington Scientific Instruments, UK) and
imaged with a JEOL JSM6330f scanning electron microscope (JEOL, Peabody, MA,
USA).

2.6. Turbidity gelation kinetics

Turbidimetric gelation kinetics were determined as previously described [37].
The pre-gel solution was diluted to 6 mg/mL and maintained on ice at 4 �C until
placed into a 96 well plate (100 mL/well). The plate was immediately transferred to
a spectrophotometer (Molecular Devices) preheated to 37 �C, and absorbance was
measured at 405 nm every 2 min for 50 min. Normalized absorbance was calculated
using Equation (1) and then used to calculate the following parameters: time
required to reach 50% and 95% maximum absorbance was denoted as t1/2 and t95,
respectively, the lag phase, tlag, calculated by extrapolating the linear portion of the
curve, and the turbidimetric speed, S, of gelation was determined by calculating the
growth portion slope of the curve normalized to absorbance [20]. The assay was
repeated three times with independent samples in triplicate.

Normalized Absorbance ¼ A� A0

Amax � A0
(1)

2.7. Rheological measurements

The pH of the ECM digest was neutralized to 7.4 and diluted to 4, 6, or 8 mg ECM/
ml. The diluted pre-gel solution was then placed on a 40 mm parallel plate
rheometer (AR 2000, TA Instruments) at 1 Pa stress and 10 �C to ensure even
distribution and the liquidity of the pre-gel solutions between the plates. A dynamic
time sweep was run with the parameters of 5% strain (with the exception of spinal
cord ECM gel at 8 mg/mL, which was run with 0.5% strain), 1 rad/s (0.159 Hz) and
rapidly increasing temperature from 10 �C to 37 �C to induce gelation as indicated by
a sharp increase and plateauing of the storage modulus (G0), and the loss modulus
(G00) (n ¼ 3 per gel per concentration).

2.8. N1E-115 ECM cytocompatibility and two-dimensional neurite extension

N1E-115 mouse neuroblastoma cells (ATCC No. CRL 2263), a commonly used
experimental cell line to examine neurotrophic potential and differentiation
[33,34], were cultured in DMEM (Sigma) with 10% fetal bovine serum
(FBS; Thermo Fisher Scientific, Waltham MA, USA)/1% pen/strep (Sigma) at
a concentration of 100,000 cells per well in 12 well plate prior to the addition of
ECM. B-ECM, SC-ECM, or UBM-ECM digest was added after cell attachment at
a concentration of 100 mg ECM/mL. Following 18e24 h in culture with ECM, the
mediumwas removed and 4 mM calcein-AM and 4 mM ethidium homodimer-1 was
added to each well to evaluate cytotoxicity. Live cells that hydrolyze membrane-
permeable calcein-AM, but not ethidium homodimer-1, fluoresce in green and
dead cells that bind and activate ethidium homodimer-1, but not calcein-AM,
fluoresce in red.
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Fig. 1. Collagen and sGAG composition in B-ECM and SC-ECM scaffolds. (A) SC-ECM
contains a significantly higher percentage of collagen than B-ECM. (B) B-ECM
contains a significantly higher concentration of sGAGs than SC-ECM.
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The effects of the B-ECM, SC-ECM, and UBM-ECM pre-gel digest upon N1E-115
neurite outgrowth were independently evaluated and used as an indicator of neu-
rotrophic potential of the remaining bioactive molecules in ECM materials after
enzymatic degradation. N1E-115 cells in DMEM with 10% FBS/1%pen strep were
seeded at a density of 5000 cells/well in a 24well plate. After incubation for 24 h, the
media was removed and replaced with DMEM with 2.5% FBS, which promoted low
levels of neurite extension and allowed changes in response to ECM to be quantified.
Neutralized ECMpre-gel solutions at concentrations of 10 mg/mL and 100 mg/mLwere
added after cell attachment and cells were incubated for 48 h. N1E-115 cells were
fixedwith 2% paraformaldehyde for 20min at room temperature. Attached cellswere
stained with DAPI for nuclei and Alexa Fluor phalloidin 488 (Invitrogen) for F-actin
filaments. Three images at 200� magnification were taken per well. The number of
cells with neurite extensionsweremanually counted. The longest neurite of each cell
was measured in pixels using ImageJ (NIH). The outgrowth assay was repeated six
times per condition. Neurites were denoted as cell processes that extended
aminimum length of twice the diameter of the cell body. Image stackswere imported
into Imaris software (Bitplane, South Windsor CN, USA) for 3-D visualization.

2.9. Neurite extension in three-dimensional culture

N1E-115cellsweremaintained in10%FBSDMEMmediaat37 �C.B-ECM,SC-ECM,or
UBM-ECM hydrogels (1ml) were cast with a cell density of 500,000 cells/hydrogel and
a concentration of 6 mg ECM/ml and after gelation for 1 h at 37 �C in a non-humidified
incubator. All hydrogels were then cultured for 24 h in DMEM supplemented with 10%
FBS/1% pen/strep. Serum concentrationwas reduced to 0% FBS and cells cultured for an
additional 2 or 7 days. The hydrogels were then fixed with 4% paraformaldehyde
(Fisher), stained for F-actin, and imaged using multiphoton confocal microscopy to
visualize three-dimensional cell morphology inside the hydrogel scaffolds.

Hydrogels cultured with N1E-115 cells were stained with 0.1% Alexa Fluor 488
Phalloidin (Invitrogen) for 2 h and submerged in PBS solution in a hanging drop slide
and coverslipped. To visualize neurite outgrowth in three dimensions, the slide was
mounted beneath an Olympus FV1000 multiphoton system. The system was equip-
pedwith a Chameleon ultra-diode-pumped laser, and a 25�XL PlanN objectivewith
a N.A. of 1.05 and a field of view of 500 mm. The excitationwavelength was chosen at
830 nm at a 6% laser transmissivity. The sampling speedwas set to 2 ms/pixel with a 2
line Kalman filter, and the scanning had an incremental z-step of 1 mm. Image stacks
were then compiled into a maximum intensity z-projection in ImageJ.
UBM-ECM

F

I

CM

C

ographs (6 mg/mL). (A) B-ECM hydrogel; (B) SC-ECM hydrogel; (C) UBM-ECM hydrogel;
CM 10,000�; (I) UBM-ECM 10,000�.
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2.10. Statistical analysis

An independent Student’s t-test was used to compare the effect of ECM pre-gel
digests on N1E-115 cell differentiation to the effect of the no ECM control (p < 0.05).
A one-way ANOVA was used for all other comparisons (p < 0.05). All statistical
analysis methods used SPSS Statistical Analysis Software (SPSS, IBM, Chicago,
IL, USA).
3. Results

3.1. Collagen and sGAG quantification

Collagen concentration of B-ECM was 537.5 � 26.9 mg
collagen/mg dry weight, which was less than SC-ECM and UBM-
ECM at 703.2 � 47.3 and 702.5 � 113.5 mg collagen/mg dry
weight, respectively (p < 0.01) (Fig. 1A). B-ECM and UBM-ECM
had a higher sGAG concentration, 5.1 � 1.4 (p < 0.009) and
4.4 � 0.4 (p < 0.02) mg sGAG/mg dry weight, respectively,
compared to SC-ECM, which was 1.3 � 0.9 mg sGAG/mg dry
weight (Fig. 1B).
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3.2. Qualitative assessment

B-ECM, SC-ECM, and UBM-ECM pre-gel solutions polymerized
to form a hydrogel at physiologic pH (7.4) and temperature (37 �C).
Qualitatively, SC-ECM hydrogels were more rigid than B-ECM and
UBM-ECM hydrogels (Fig. 2AeC). SEM micrographs showed dense,
moderately organized collagen fibrils in B-ECM, SC-ECM, and UBM-
ECM hydrogels (Fig. 2DeI). B-ECM contained the thickest fibrils
(Fig. 2G), while SC-ECM hydrogels contained the most dense
arrangement of fibrils (Fig. 2H). SC-ECM and UBM-ECM hydrogels
contained moderately organized collagen fibers, while B-ECM
contained dense clusters of randomly distributed collagen fibers.

3.3. Turbidimetric gelation kinetics

The gelation kinetics between hydrogel forms of B-ECM, SC-
ECM, and UBM-ECM were evaluated using a normalized absor-
bance (Fig. 3A) to define the lag phase, times to reach half and 95%
of the final turbidity, and speed to reach complete gelation using
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Table 2
Summary of rheologic and turbidity values for B-ECM, SC-ECM, and UBM-ECM.

Rheology B-ECM (average (STDEV)) SC-ECM (average (STDEV)) UBM-ECM (average (STDEV))

4 mg 6 mg 8 mg 4 mg 6 mg 8 mg 4 mg 6 mg 8 mg

Storage modulus (G0; Pa) 20.3 (16.0) 49.9 (16.8) 61.8 (11.0) 138.5* (33.8) 235.5 (63.1) 757.0* (74.9) 11.43 (4.9) 72.78 (2.2) 143.8 (84.1)
Loss modulus (G00; Pa) 2.6 (1.9) 9.4 (4.6) 10.2 (1.8) 16.3* (4.9) 37.5* (11.4) 93.6* (10.9) 1.4 (0.6) 10.14 (0.5) 19.3 (12.3)
Complete gelation (Time; min) 34.8 (28.9) 2.4 (1.3) 8.3 (2.8) 11.7 (5.63) 7.0 (3.6) 28.97 (4.7) 52.5 (2.2) 8.47 (1.7) 19.8 (19.1)

Turbidity B-ECM (average (STDEV)) SC-ECM (average (STDEV)) UBM-ECM (average (STDEV))

6 mg 6 mg 6 mg

Speed (S; min-1) 0.8 (0.1) 0.11 (0.02) 0.07 (0.02)
50% gelation (t1/2; min) 8.9 (5.4) 8.2 (5.1) 11.0 (5.8)
95% gelation (t95; min) 15.1 (5.5) 12.2 (4.6) 21.6 (2.9)
Lag phase (tlag; min) 2.8 (4.2) 3.6 (5.6) 7.2 (1.4)

* Indicates statistical significance at p < 0.05 when one group is statistically different from the other two.
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turbidimetric gelation kinetics as previously described (Table 2)
[20,37]. Turbidimetric gelation kinetics showed a sigmoidal shape
for SC-ECM and UBM-ECM hydrogels, whereas B-ECM showed an
exponential shape (Fig. 3B). Differences observed in kinetic curve
shapes translated to a longer lag phase (tlag; Fig. 3C) for UBM-ECM
hydrogels (7.2 � 1.4 min) than B-ECM (28 � 4.2 min) or SC-ECM
hydrogels (3.6 � 5.6 min). The time required to reach half of the
final turbidity (t1/2; Fig. 3D) was also longer for UBM-ECM
(11.0 � 5.8 min) than B-ECM (8.9 � 5.4 min) or SC-ECM hydrogels
(8.2� 5.1 min). The time required to reach 95% of the final turbidity
(t95; Fig. 3E) was also longer for UBM-ECM hydrogels
(21.6 � 2.9 min) compared to B-ECM (15.1 � 5.5 min) and SC-ECM
hydrogels (12.2 � 4.6 min). The velocity to complete gelation (S;
Fig. 3F) was faster for SC-ECM hydrogels (0.11 � 0.02 min�1)
compared to B-ECM (0.08 � 0.01 min�1) and UBM-ECM
(0.07 � 0.02 min�1) (p < 0.05). These results suggest that during
hydrogel assembly, SC-ECM hydrogels reach the steady state
plateau faster than B-ECM or UBM-ECM hydrogels.
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3.4. Rheologic measurements

The storage modulus (G0) and the loss modulus (G00) for B-ECM,
SC-ECM, and UBM-ECM hydrogels changed over time as the sample
temperature increased rapidly from 10 �C to 37 �C. Sigmoidal
storage and loss moduli curves showed increased maximum
storage modulus, maximum loss modulus, and time to complete
gelation as concentration increased (Fig. 4AeC). SC-ECM hydrogels
had the largest storage modulus at all hydrogel concentrations
(Fig. 4D). At 8 mg/mL, the storage modulus for SC-ECM,
757.0 � 74.8 Pa, was greater than both UBM-ECM and B-ECM
(p < 0.05), which showed storage moduli of 143.8 � 84.1 Pa and
61.8 � 11.0 Pa, respectively. While B-ECM hydrogels have lower
storage moduli than SC-ECM and UBM-ECM hydrogels, B-ECM
hydrogels at a concentration of 6 mg/mL reached the steady state
plateau in 2.4 � 1.3 min; a time that was faster than UBM-ECM and
SC-ECM, which had times of 8.5 � 1.7 min and 7.0 � 3.6 min,
respectively. Table 2 summarizes the storage modulus, loss
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modulus, and time to complete gelation for each ECM hydrogel at
concentrations of 4, 6, and 8 mg/mL.

3.5. N1E-115 ECM cytocompatibility and two-dimensional neurite
extension

The live/dead assay showed all ECMs to be non-cytotoxic forN1E-
115 cells (Fig. S1). B-ECM, SC-ECM, and UBM-ECM pre-gel solutions
at concentrations of 10 and 100 mg ECM/mL increased the number of
cells extending neurites (differentiated cells) compared to cells
cultured without ECM digest. At 100 mg ECM/mL, SC-ECM digest
promoted the highest percentage of differentiation, with
69.7� 14.0% of the cells extending neurites, whereas UBM-ECM and
B-ECMpromoted, 57.4�12.1% and54.3�11.7% respectively. At 10 mg
and 100 mg ECM/mL, B-ECM, SC-ECM, and UBM-ECM increased the
percentage of cellswithneurite extensions compared to thebuffered
control; however B-ECM was the only scaffold that showed an
increase in neurite extension length for both 10 and 100 mg ECM/ml
compared to cells cultured without ECM (Fig. 5).
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Fig. 5. B-ECM and SC-ECM pre-gel solutions increase the number of cells with neurite
extensions. All scaffolds show a dose dependent increase for the number of cells with
neurite extension, while only B-ECM shows a dose dependent increase in neurite
length with increasing concentrations of ECM. * Indicates statistical significance of
p < 0.05.
3.6. Neurite extension in three-dimensional culture

B-ECM, SC-ECM, and UBM-ECM supported the formation of
three-dimensional neurite extensions at 2 and 7 days following
removal of serum (Fig. 6). N1E-115 cells seeded in B-ECM hydrogels
promoted a short arborizing growth pattern at two days, while SC-
ECM and UBM-ECM hydrogels induce unipolar extensions. By 7-
days, all ECM hydrogels promoted unipolar or bipolar extensions
(Fig. 6).

4. Discussion

The present study shows that biologic scaffolds derived from
porcine brain and spinal cord can be processed to form hydrogels
that retain selected ECM-specific constituents. At comparable
ECM concentrations, these hydrogel forms of CNS-ECM have
distinctive composition and biomechanical properties. Further-
more, CNS-ECM hydrogels are cytocompatible, promote N1E-115
cell differentiation, and support three-dimensional neurite
extension.

The mechanical properties of SC-ECM hydrogels are similar to
those previously shown to support neuronal differentiation of stem
cells (0.1e1 kPa) [38]. It is therefore plausible that the rheologic and
turbidimetric properties of CNS-ECM hydrogels can be used to
influence the differentiation of endogenous or therapeutically
administered stem cells following CNS injury [38]. The gelation
kinetics and storage moduli of CNS-ECM hydrogels can be manip-
ulated to a certain extent by varying ECM concentrations, such that
following polymerization a hydrogel could be made with tailored
in vivo pre-polymerization lag time, final storagemodulus, and rate
of polymerization [39]. Altering these parameters may enhance not
only the ability of the gels to modulate stem cell behaviors, but also
the cell and drug delivery properties of CNS-ECM hydrogels [40,41].

It is logical that the distinctive collagen and sGAG concentrations
play a role in ECM hydrogel gelation and rheologic properties;
therefore, quantification of the collagen and sGAG concentrations
provides valuable insight. Furthermore, the collagen monomers
aggregate and self-assemble into thin filaments that can then
crosslink into collagen fibers that interweave with themselves and
other ECM components to contribute to hydrogel formation [42].
The shorter polymerization time and smaller storage modulus of B-
ECM hydrogel compared to SC-ECM hydrogel may result from the
higher sGAG concentration found in B-ECM hydrogels. Concentra-
tion of sGAGs has been shown to alter gelation kinetics
and mechanical properties of hydrogels [43,44]. While UBM-
ECM hydrogel has a similar concentration of sGAGs compared to
B-ECM hydrogel, the increased storage modulus could be due to
a possible increased ratio of collagen I to collagen III in UBM-ECM
hydrogel [45,46]. The increased storage modulus of SC-ECM hydro-
gel compared to UBM-ECM hydrogel may result from relatively low
sGAG concentration found in SC-ECM. Although collagen composi-
tion of B-ECM contains approximately 50% collagen, native brain
contains very limited amounts of ECM components including
collagen [47]. It should be noted that the percent collagen described
herein represents a percentage of the isolated ECM, rather than
a percentage of themass of the intact brainprior todecellularization.
While collagen and sGAGs affect hydrogel mechanical properties,
further studies are needed to determine those additional molecules
present in theECMhydrogels thatmaycontribute to polymerization.

Both composition and material properties of the CNS derived
hydrogels are distinct from a hydrogel derived from a non-CNS
tissue source (UBM-ECM) [20]. The unique ECM composition of
different organs [48,49], suggests that ECM scaffolds derived from
the same tissue type as that of the injury site may contain bioactive
components uniquely able to induce constructive remodeling of
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that tissue type. An array of proteins and peptides will be generated
during ECM solubilization [9,20] that is reflective of the molecular
profile of the organ fromwhich the ECM is derived. Thus, a hydrogel
derived from solubilized and digested CNS-ECM will contain
a unique composition of molecular constituents resembling those
found within the ECM of healthy CNS tissue. The bioactive factors
retained in the ECMhydrogels in the present study are neurotrophic
as evident by the formation of N1E-115 cell neurite extensionswhen
cultured in the presence of ECM digests. In addition, the present
study shows that B-ECM hydrogels increase the length of N1E-115
neurite extensions in two-dimensional culture. This effect is not
seen inUBM-ECMor SC-ECMdigest, a possible indicationof a tissue-
specific effect of B-ECM upon these brain derived cells [33,50].

5. Conclusions

B-ECM and SC-ECM hydrogels, while derived by similar decel-
lularization methods from their source tissue, each have a unique
biochemical composition, mechanical properties, and neurotrophic
potential. The increase in neurite length for N1E-115 cells in
response to B-ECM suggests a tissue-specific effect of B-ECM
hydrogels on a brain derived cell line. Each ECM elicited unique cell
responses as demonstrated by neurotrophic potential in their
solubilized form and support of considerable three-dimensional
neurite growth and extension in their re-polymerized hydrogel
forms; this finding suggests that the molecular constituents of the
source ECM play an important role in the bioactivity of these
scaffolds. Support of three-dimensional neurite extension by CNS-
ECM hydrogels also suggests the possibility that these hydrogels
provide the scaffolding necessary to promote in vivo axonal repair
and warrants further study.
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